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Abstract

Recent band structure calculations by Ham indicate how the Fermi
surface of the alkali metals, which is expected to be nearly spherical under
normal conditions, may change when the lattice constant is decreased ..through‘
hydrostatic pressure. Since direct measurement of the distortion of the .
Fermi surface is difficult, we have tried to study its magnitude by measuring
the Hall voltage i.n the alkalis as a function of hydrostatic pressure up to
15,000 kg/cm . In each case the Hall vo]tage decreases with increasing
pressure, the size of the decrease ranging from 2 percent in 15,000 kg/cmz
for lithium to 37 percent in 15, 000 kg/t:mz for cesium before compressibility
corrections are applied.

The Hall constant, R, can be written as I/Necn* where n’* is a
factor of the order of unity which»expresées the deviation from the free electron
value of the Hall constant. The data, with all explicit volume dependence
removed, are expressed in the form of curves of n* vs., pressure. In all of
the alkalis except cesium, n decreases monotonically with increasing pres-

sure; the decreases range from 5 percent in 15,000 kg/cmz for lithium to

8 percent in 15,000 kg/cmZ for rubidium. In the case of cesium n* passes

through a minimum at 5000 kg/crnZ and rises to a value of 1.2 at 15,000
kg/cmz.

The change of n* between room and liquid nitrogen temperatures was
also measured. In all of the alkalis except lithium the change is less than
3 percent. In lithium n* decreases by about 25 percent between room and
liquid nitrogen temperature.

The warping of a nearly spherical Fermi surface is described by Kubic
harmonics and the effect of the warping on n* considered. Increases in
the warping parameters increase n*; since the band structure calculations
indicate that increasing pressure increases the warping parameters, .the
data cannot be explained on the basis of anisotropic Fermi surfaces alone.
If anisotropic scattering times as well as warped Fermi surfaces are con-

sk
sidered, then increases of the warping parameters can cause decreasesin n,

-Vi-
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The pressure results are explained in a semi-quantitative manner using a
scattering time that varies by a factor of three over the Fermi surface. By
contrast, the warping of the Fermi surface is small; with the exception of
cesium, the electron wave vector at the Fermi surface deviates from the

free electron value by less than 10 percent.

An approximate expression for T (l_c.) is derived and the factors con-
tributing to the anisotropy in 7 are considered. The most important factors
are the anisotropy of the velocity of sound and the dependence of the size of
the phonon wave vector used in umklapp processes upon the initial electron
state. A crude calculation shows that with appropriate forms for the electron-
phonon scattering matrix element, the latter factor alone can give a scattering

time that varies by nearly 70 percent over the Fermi surface.

-vii-
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Pressure Dependence of the Hall Constant
of the Alkali Metals
by
Thomas Frederick Deutsch
Gordon McKay Labora.to‘r‘y of Applied :Science
Division of Engineering and Applied Physics
Harvard Uniirersity

Cambi‘idge, Massachusetts

I. Introduction

A. The Fermi Surface in Metals

Considerable work has recently beeil done in an éffort to learn more
about the Fermi surface in metals, both theoretically and experimentally.
In a one electron picture, the Fermi surfaceiis a surface of constant electron
energy in k space, where k is the reduced momentum; the value of the
P defined by £(EF) = —é— where
f(E) is the Fermi-Dirac distribution function. It may also be thought of as the

energy on this surface is the Fermi energy, E

surface separating regions of k space where the electron states are occupied
from those that are empty. Although the concept of the Fermi surface grew

out of a one electron picture, recently theoretical work has been done to show
that it has some justification even in a many electron picture [ 1]. The possible
topologies of the Fermi surface in metals have been discussed by many authors.

A good review of the subject has recently been given by Ziman [ 2].

Although band structure calcﬁlations have been performed for many
metals, especially the alka.lis‘, relatively few of these are sufficiently detailed
to allow a deduction of the shape of the Fermi surface. Generally, the energy
has been computed only at certain symmetry points in the Brillouin zone; to

obtain the Fermi surface, curves of electron energy vs. k for several
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directions in the reciprocal lattice are needed. Recent calculations on the
band structure of the alkali metals by Ham [3] are of importance for
several reasons. First, they provide curves of E vs. k for the three
principal directions and allow the deduction of an approximate shape for the
Fermi surface. Second, they are made for the entire alkali series,

(lithium, sodium, potassium, rubidium, and cesium), using the same method

in each case and should give a qualitative picture of the change in the shape

of the Fermi surface as one progresses through the series. Third, they have
been carried out for several values of lattice constant and so provide a guide as

to how the Fermi surface should change under pressure.

The work of Ham used a variational technique developed by Kohn and
Rostoker [4]. They used a potential that had only a radial dependence within
a sphere inscribed in the atomic polyhedron and was constant outside the
sphere. The wave equation is solved in the actual atomic polyhedron and gives
an E(-I;) which is not spherically symmetric. With this form of the potential,
energy eigenvalues could be obtained using some geometrical structure con-
stants, which depend only on the type of lattice, and the values of the logarith-
mic derivative of the solution of the radial wave equation at the boundary- of
the inscribed sphere. Ham [ 5,6] used the method of quantum defects to

obtain the logarithmic derivatives needed; this made it unnecessary to assume

a specific numerical potential. The use of the quantum defect method takes

into account the polarization of the ion cores, relativistic effects, and
exchange effects between the valence electrons and the ion cores. ‘These
effects are important in the heavy elements and a calculation which ignored
them would probably be in error.

The accuracy of the Kohn-Rostoker technique used is limited by
the realism of the assumed potential rather than by mathematical accuracy.
Furthermore, the method is sufficiently tractable to make possible band
structure calculations elaborate enough to indicate the shape of the Fermi
surface. In the alkalis the size of the ion core is small, (about half the
nearest neighbor distance in sodium) and consequently the Kohn-Rostoker
potential may be fairly realistic.

Other band calculations have been carried out using explicit potentials;
for example Heine [ 7] has computed the band structure of aluminum in-a

self-consistent manner using a method which takes approximate account of
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the effects of correlation and exchange between the valence electrons and

the ion core, and also among the valence electrons. This determination was
checked with a combined theoretical-experimental one which used available
experimental data, primarily from deHaas-van Alphen experiments, to
supplement a simpler calculation [ 8] . The agreement between the two deter-
minations of the behavior of E(E) away from the zone surface was used to
justify the potential used in the more elaborate band structure calculation,
even though the calculated shape of the surface at certain zone corners did

not agree with the experimental results. Harrison [ 9] has obtained a
different shape for the Fermi surface of aluminum using a similar theoretical-
experimental approach; he was able to fit the experimental data with a model
having fewer deviations from a free electron Fermi surface than Heine's.
Harrison used the band calculations of Heine to modify the surface predicted
by the free electron model and used data from deHass-van Alphen experiments

to determine the details of the geometry.

Later work by Harrison has investigated the validity of a nearly free
electron approach for determining the Fermi surface of the polyvalent
metals [ 10] . The conduction electron wave functions are plane waves ortho-
gonal to the wave functions of the core electrons (O.P.W.'s); the electron

: . 2 :
energy is proportional to k= . Comparison of constant energy surfaces for
aluminum calculated with one O.P.W. and with three or four O.P.W.'s shows
that the latter show fewer sharp bends than the one O.P.W. surface, but are

not greatly modified otherwise [ 11] .

While the use of plane waves or a nearly free electron picture to
describe electrons moving in the periodic potential of the crystal lattice
appears physically unrealistic, there seems to be theoretical justification
for a one O.P.W. approach in terms of a pseudo-potential which cancels
the lattice potential [ 12, 13] . This justification has not been worked out in

detail.

Cohen and Heine have discussed the band structure of the alkali and
noble metals in terms of a model which assumes that the wave function of an

electron may be represented by one O.P.W. in the interior of the Brillouin
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zone and by two O.P.W.'s near a zone face [ 14]. The energy, E(K), is then
spherically symmetric except near the zone boundaries and the E vs. K curve
is parabolic except near the zone face. In this picture the geometry of the
band structure allows the warping of the Fermi surface to be expressed

in terms of a distortion parameter which depends on the band gap at the

zone face. This gap can be related to the observed atomic term values for
the free atom and the distortion of the Fermi surface can be compared for the
entire alkali series. The effective mass at the bottom of the conduction band,
rr? , is8 also obtained from the distortion parameter and compared with the

results of a quantum defect method calculation; both methods give the same

*
trend for m in going through the series. The relationship Cohen and Heine

derive depends upon having energy bands that are parabolic except near the
zone faces; the description of the wave functions by 2 O.P.W.'s is one way,

but not necessarily the only way, of justifying this energy dependence [ 15].

On the theoretical level techniques of band structure calculations have
advanced to the point where predictions about the shape of the Fermi surface
may be made, at least for some metals. The validity of the results depends
upon whether the physical assumptions, primarily those about the potential,
are correct; the correctness of the assumptions may be judged in part by the

agreement with experimental determinations of the Fermi surface.

B. Experimental Techniques for Obtaining the Fermi Surface.

As the work of Heine and of Harrison on aluminum has pointed out, a
purely theoretical determination of the Fermi surface is not always feasible
and experimental information is badly needed. Chambers [ 16] and Pippard
[17] have presented reviews of the techniques available. We shall summarize

these methods and mention some more recent developments.

Measurements of the magnetic susceptibility of metal single crystals
at low temperatures sometimes show oscillations which are periodic in
b © i 1, where H is the magnetic field. These oscillations constitute the
de Haas-van Alphen effect. Their period gives the extremal area of a cross
section through the Fermi surface with its normal along the direction of H.

From measurements taken with different orientations of the crystal one can
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attempt to construct the complete Fermi surface. Measurements of the
temperature dependence of amplitude of the oscillations give an average
effective mass for a cross section of the Fermi surface. Until fairly
recently de Haas-van Alphen measurements had been done at low fields

(15 kilogauss) and the effect was not seen in monovalent metals [ 18].

Lax has reviewed the information that these measurements have given for

a number of metals, among them bismuth, arsenic, gallium, and zinc.[ 19].
More recently Shoenberg has used pulsed fields of 160 kilogauss to make

de Haas-van Alphen studies on copper, silver, and gold [ 20]. The results
on copper are of special interest, because they confirm the picture, proposed
by Pippard on the basis of anomalous skin effect data, of a Fermi surface which

touches the zone boundaries.

The most complete anomalous skin effect measurement is the determina-
tion of the Fermi surface in copper by Pippard [ 21] mentioned above.
Maxwell's equations predict that the surface impedance of a metal, defined as

the real part of

41rEx)

Z =(TI (I-l)

y z =0

where E and H are the electric and magnetic fields respectively, is propor-

-1/2

tional to @ , Wwhere ¥ is the dc. conductivity. At sufficiently low tem-

peratures, the surface resistance is anomalous in that it is independent of o .
In this anomalous region the surface re;istance can be related to an integral
containing the radius of curvature of a cross section of the Fermi surface.
From measurements of the anomalous skin effect for surfaces of different
orientations, one can attempt to reconstruct the Fermi surface. The method
requires carefully polished surfaces and very pure materials, the latter to
satisfy the requirement that the mean free path of an electron be much larger

than the skin depth.

The attenuation of ultrasonic waves in metal single crystals subject to
a .dc magnetic field which is perpendicular to the direction of propagation has
been used to investigate the Fermi surface of copper [ 22]. At low tempera-

tures the main contribution to the acoustic attenuation is electronic; a magnetic
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field can cause electron orbits in real space to have the same diameter as
‘wavelengths of sound. By measuring the location of the maxima and minima
of attenuation as a function of magnetic field, an average radius of a cross
section of the Fermi surface may be obtained. The detailed theory of this
effect has been recently reviewed [ 23]. Further work on copper has con-
firmed many of the details of the Fermi surface proposed by Pippard on the
basis of anomalous skin effect work and by Shoenberg on the basis of

de Haas-van Alphen measurements [ 24].

Conventional cyclotron resonance techniques must be modified in order
to study metals, since the radio frequency electric field cannot penetrate into
the metal much further than the skin depth. Azbel and Kaner [ 25] have shown
that a resonance effect can be obtained by using a dc. magnetic field parallel
to the surface of the metal. Some of the electrons, which havé circular orbits
about an axis parallel to the field, come within a skin depth of the surface of
the metal and can absorb rf energy. If the frequency of the microwave
energy is correct, a resonance can occur. This technique has been used to

obtain effective masses in copper [ 26].

Magneto-resistance measurements on single crystals at low temperatures
have been used to study the Fermi surface of copper [ 27]. The interpretation
of the data requires an assumption tha.t the scattering time is isotropic
[t.m; 'r(l-c's = 7(E)]. The theory computes the dependence of the magneto-
resistance coefficients upon parameters that express the warping or anisotropy
of a spherical Fermi surface in terms of Kubic harmonice. The requirement
that the scattering time be isotropic is important, since if it were not, the
observed magneto-resistance could be attributed to a spherical Fermi surface
‘with an anisotropic T, or to a combination of anisotropic Fermi surfaces and
scattering times. The amount of warping is obtained by fitting the theoretical
expressions to the measured value of the coefficients. The results indicate
that the Fermi surface actually touches the zone face in the 111 direction, in
agreement with other work on copper; the fact that touching occurs indicates
that the description of the Fermi surface as a warped sphere is not an entirely

appropriate one and the warping parameters obtained may not be accurate,
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The field dependence of the magneto-resistance as a function of the
orientation of a single crystal sample has been used by Russian workers to
distinguish between open and closed electron orbits on the Fermi surface [ 28].
This method has been used to examine sodium and has led to the conclusion

that the Fermi surface is closed.

These are the techniques used to determine the Fermi surface in metals.
They require the use of single crystals and low temperatures and the results
are difficult to interpret without some theoretical model of the Fermi surface.
The alkali metals are relatively simple from the theoretical viewpoint, but are
difficult for the experimenter to prepare and handle. In this case there is
some information about the shape of the Fermi surface, which we expect to
be nearly spherical, but unfortunately no direct experimental determination of
the surface. There is, however, some indirect evidence as to the shape of

the Fermi surface in the alkalis.

C. The Fermi Surface in the Alkalis - Experimental Evidence

As we have mentioned above, the magneto-resistance data on single
crystals can be used to make some deductions about the shape of the Fermi
surface. In the case of the alkalis the available data are almost exclusively
on polycrystals and do not give the magneto-resistance coefficients directly.
The only single crystal work is a measurement on sodium, where the single
crystal nature of the sample was inferred from anisotropy in the transverse
magneto-resistance, but not verified by X-ray data [ 29] and the Russian
work mentioned before [30] which gives no detailed information. Garcia-
Moliner has undertaken to analyze the polycrystal data, taken in the range
4-20° K, in an effort to obtain some information about the shape of the
surface [31]. He assumes that the scattering time is isotropic at low
temperatures and that the wave vector at the Fermi surface can be expressed

in an expansion in Kubic harmonics:

where Y4(100) = 1, Y4(110) = - 1/4, Y4(lll) =-2/3. He defines the
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parameters

A = (KI/KO)JEF A = (K'I/K'O)EF (1-3)

- where the ' indicates the derivative #iifh respect to the energy Ek y and
EF is the Fermi energy. Davis has calculated the transverse and longitudinal
magneto-resistance for a Fermi surface of this type, assuming the current to be
along a 100 axis [32]. Garcfa-Moliner uses these calculations to obtain an
expression for the transverse magneto-resistance of a polycrystalline sample.
Because Davis' calculations do not give the three magneto-resistance coeffi-
cients for single crystals directly, but rather those combinations of them
which give the transverse and longitudinal magneto-resistance for current in
the 100 direction, Garcia-Moliner equates the calculated ratio of longitudinal
to transverse (polycrystal) magneto-resistance to the experimentally observed
value in order to get a relation between the three coefficients which allows him
to use Davis' results. He also needs to assume a value for A'/A. With
these assumptions he can calculate A, which expresses the warping of the
Fermi surface, from the available data on polycrystals. His results are
shown in Table 1-1, which tabulates a number of properties of the alkalis.

The values for rubidium and cesium are uncertain, since the experimental
information is inadequate for a reliable calculation. Because the anisotropy
parameter A enters in the expression for the magneto-resistance as Az,
small differences in the anisotropy predicted by various band structure cal-
culations cause large differences in the predicted magneto-resistance; this
approach is used to suggest that the 1934 calculation of Jones and Zener
gives the best fit to the experimental data for lithium [ 33]. Moliner gives the
alkalis in order of increasing anisotropy as sodium, rubidium, potassium,
cesium and lithium; although the relative order of the intermediate metals

is not definite, the extremes of the series are well determined.

Since both sodium and lithium undergo martensitic transformations
from the body centered cubic to the close packed hexagonal form in cooling to
below hydrogen temperature, it is not clear that the low temperature magneto-
resistance data on these metals are meaningful [ 34,35]. Even if the approach
used by Garcia-Moliner gives a correct picture of the relative anisotropies of
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Property Li Na K Rb Cs
R - Yoi-tm x 1083 17031 [ ol g pl2] g0l
amp. -gauss
n* - computed from R .79 L 17 1,11 .94 .98
0 - Debye Temp. | *] 430 160 99 59 43
. ©
in K
Maliing Temp, G 180 97.7  63.6 39.0 28.5
Elastic Constants
Ci % 10”11 in dynes/cm2 .615[ 6] .416[6]
c,,x10"11 " 469 333
12 . .
c,, xio~t? " 592 263
44 . »
ZC44
Anisotropy —=———7pm— 8.11 6.34
©11- %12
Linear contraction 3. 5%[ 7] 5. 5%[ 7] 8. 7%[ 7] 10. 3%[ 8] 12. 5%[ 8]
in 15,000 kg/cm
2 7
A x 107 (from Garcia- 12,7 1.7 8.8 8?7 9 ?2°?
Moliner)[ 9]
l#] = 16® 5,3 .6 1.3 2.5 12

(from expression (I-5)

Table 1-1

Properties of the Alkali Metals
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the alkalis, his choice of the expansion for the wave vector k overestimates
the degree of warping. We expect that the Fermi surface will bulge towards
the nearest zone face, which in the case of the alkalis lies in the 110 direc-
tion in the reciprocal lattice. However, an expansion in terms of fourth-order
Kubic harmonics can only give bulging towards the 100 faces (if A is positive)
or towards the 111 face (if A is negative). On the other hand, if sixth-order
Kubic harmonics are included in the expansion, the desired bulging in the

110 direction can be obtained. Furthermore, it turns out that the effect of

the Y6 terms on the magneto-resistance coefficients is more than ten times
that of the Y4

who expanded the energy at the Fermi surface, rather than the wave vector, in

terms. This has been shown by the work of Olson and Rodriguez

Kubic harmonics [36]. They used

£2 2 o 4 L 6
E = —S— l:llz(—k ) trig Y, (0.4) +rt () Y6(o,¢s):] (1-4)
2m o o o

s
as an expression for the constant energy surface; m is an effective mass,
ko is the radius of a sphere in k space which contains one electron per atom,
and_r and t are warping parameters. The values of Y6 in the three princi-

pal directions are:

= - .13 - 16
Yo(100) = 1, Y (110) = -2 , Y, (111) = =

Although this appraach is similar to that of Garcfa-Moliner, it has the
advantage of eliminating parameters like A' from the final expression for

the magneto-resistance coefficients. Furthermore, Olson and Rodriquez
compute all three coefficients, allowing an expression for the transverse
magneto-resistance of a polycrystal to be obtained directly, without any
assumptions about the ratio of the longitudinal te transverse magneto-resistance.

By using Garcla-Moliner's expression for B_, the transverse magneto-

t b
resistance of a polycrystal, along with the results of Olson and Rodriquez we
obtain

2
Ap . g - [—i‘—] [48.9 r% - 7.15 2 t + 750 (rt)? ] (I-5)
pH
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where R is the calculated (free electron) value of the Hall constant and p

is the resistivity at the temperature of the experiment. R is expressed in
ohm-cm/ gauss and p' in ohm-cm, Since t, as obtained by fitting the
expression, (I-4) to Ham's E (k) curves, is of the order of unity, it is clear
that the terms from Y‘6 contribute far more than those from Y4. In

Table I-1 we give the values of |r| obtained by fitting the expression (I-5),
with the approximation that t may be set to 1, to Moliner's values of Bt'
The values of p are taken from Kittel [37]; the values of R from Mott and
Jones [ 38]. The values of the parameter r that we obtain indicate considerably
less warping than is obtained from the expansion (l-2), even though A and r are
not directly comparable.

The behavior of the low temperature thermopower has been used by
Ziman to make some estimate of the anisotropy of the Fermi surface in the
alkalis [39]. The thermopower, Q, is defined by:

E=QvT (L-6)
‘where E is the electric field in a metal and v T is the temperature gradient.
On a free electron picture Q should be negative, approximately proportional
to T, and small, of the order of .1 microvolt/ ° ¢. at 10°K. Measurements
on the alkalis show that at low temperatures Q can be either positive or nega-
tive or can even change sign with temperature, that it is not always linear in
T, and that it may be of the order of several microvolts/ %G The large size
of the effect at low temperature is due to the fact that the phonon distribution
is not in equilibrium and contributes to the thermopower [40]. Bailyn pointed
out that the sign of the lattice contribution to the thermopower can be either
positive or negative [41]. This is because of the role played by umklapp
processes in the lattice thermopower. The lattice power calculated by Ziman
is proportional to -<:'. ?{")_,.where the < > indicates an a.v‘e_r.age over all
-electron-phononinteractions, q is the phonon wave vector, and s is given by:

=

=K + Z (1'7)

- . i
Ic’ and 1-:' are the initial and final electron wave vectors and K is a reciprp-

cal lattice vector. If K = 0 we have a normal process, 8 is parallel to zﬁ
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the term in the < >1s positive, and the contrlbutlon to the thermopower

is negative. For an umklapp process, where K is not O, s can be anti-
parallel to q and the contribution to the thermopower positive. In an extended
zone scheme, the size of the smallest phonon wave vector with which an um-
klapp process may occur is determined by the shortest distance between
adjacent Fermi surfaces and changes if the surfaces are warped. Ziman
calculated the temperature dependence of the thermopower for various

amounts of bulging of the Fermi surface and found he could fit the experimental
data for sodium and potassium quite well. The rubidium and cesium data

were not fitted in detail. For lithium, the thermopower is positive throughout
the temperature range; this is taken to suggest that the Fermi surface actually
touches the zpne bopndary. Ziman concludes that in sodium the surface is
nearly spherical, and that the anisotropy increases as we go through the series

potassium, rubidium, cesium and lithium.

Ziman's calculation is a rough one; he does not take the large anisotropy
of the velocity of sound in alkalis into account and this could well change the size
of the warping he obtains. However, we do expect that the differences between
the various alkalis should show up in this calculation. In a more recent paper
Bailyn suggests that differences in the anisotropy of the transverse phonon
spectrum for the various alkalis may also be able to explain the observed
thermopowers and that the relative importance of these two proposed causes is

not at all clear [ 42].

We have seen that both the magneto-resistance data and the thermo-
power data have been used to infer that lithium is the alkali metal with the
most anisotropic Fermi surface; the surface may even touch the zone face.
Cohen and Heine [43] have inferred touching of the surface in lithium from
the pressure dependence of the resistance. In all the alkali metals except
lithium, the resistance initially decreases as pressure increases. The con-
ductivity may be written as

2 N e
e = e3 § vT(k) dA o wTA (1-8)
474

where the integral is taken over the Fermi surface, v is the electron velocity,

T (ic’) is the scattering time at point K,d A is an element of area on the Fermi
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surface, ?» and T are average velocities and scattering times and A is

the area of the Fermi surface. The usual explanation of the effect of pres-
sure on the conductivity is that increasing pressure decreases the amplitude
of the lattice vibrations, increasing 7[44]. Cohen and Heine proposed that
the effect in lithium is dominated by the increase of the area of contact with
pressure; this can decrease the area of the Fermi surface and increase the
resistivity. According to Bailyn [45] increased contact creates a narrower
-shape for the Fermi surface, with smaller cross sections; this decreases the
velocities on the surface and increases the resistivity. Cohen and Heine also
claim that the increased contact enhances scattering by umklapp processes
and opposes the effect of the lattice vibrations on 7. We have been able to
draw Fermi surfaces in which increased contact increases the area of the
Fermi surface. An example is the case where the unoccupied region of k
space is spherical. Since the volume of this unoccupied region must stay
constant and a sphere encloses this volume with the smallest possible surface
area, any increased contact increases the area of the Fermi surface. This
example points out that statements about the effect of touching should be
accompanied by some picture of the original shape of the Fermi surface;

without this, arguments on the effect of touching are not convincing.

Brooks [46] has pointed out that the decrease of the conductivity of
lithium with pressure can be explained without invoking touching of the Fermi
surface with the zone boundary. Calculations of the effective mass, such as
those made by Brooks using the quantum defect method and summarized by

&
‘Ham [47] show that m increases as the pressure increases. Since

v cc. dE/dk oc _l/m* (I-9)

the average velocity v will decrease with pressure. Likewise the decrease

in the density of states factor |V K E l in the expression for 7 (see Sec. IV,
Eq. IV-37) lowers T .

The fact that the K X-ray emission for lithium does not drop sharply
in intensity at the high energy end of the band has been used to infer strong
deviations from free electron behavior [ 48]; this may indicate actual

touching of Fermi surface with the zone boundary.
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There is, then, no direct experimental information about the shape
of the Fermi surface in the alkalis. What information we do have has been
inferred from experiments on the transport properties. These transport
properties depend on averages of scattering times and energy derivatives
(electron velocities and effective masses) taken over the entire Fermi surface
and yield useful information only if we have some model of the shape of the
surface to start with. In the alkalis the expectation is that the Fermi surface
is a warped sphere. The inferences that have been made agree that lithium
shows severe warping and the Fermi surface may touch the zone boundary, that
sodium has very little warping and that the warping probably increases as we

go through the series potassium, rubidium and cesium.

D. The Fermi Surface as a Function of Pressure

With the availability of band calculations made at several values of
lattice constant, theoretical predictions about the change in the shape of the
Fermi surface with pressure can bemade. The question arises as to possible
experiments that will give information about the shape of the surface as a
function of pressure. The high compressibilities of the alkali metals (Table 1-1)
make possible significant changes of lattice constant in the pressure range
available in the laboratory. As we have seen, the direct techniques for studying
the Fermi surface such as de Haas-van Alphen or acoustic attenuation measure-
ments have not yet been applied to the alkalis, in large part because of the
difficulty of growing single crystals and handling the metals. Even if these
difficulties are overcome, helium temperature pressure measurements are
possible only over a small pressure range, since the pressure transmitting
fluid freezes with application of relatively low pressures. Even with the use
of solid hydrogen as the pressure transmitting medium the pressure is still
relatively low, of the order of 5000 atmospheres, and shear stresses are
present which may introduce non-hydrostatic strain and produce additional
defects due to plastic deformation [49]. In order to take advantage of the
pressure range available in the laboratory, measurements at either room or

nitrogen temperatures are needed.

Since no direct means of determining the Fermi surface are available,
the next best possibility is to measure some transport properties under pres-

sure and interpret the results in terms of changes of the Fermi surface and
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of other parameters; preferably we would like to measure an effect that is

sensitive to the shape of the Fermi surface alone.

The simplest transport property to measure is the conductivity.

Unfortunately,this is quite insensitive to the shape of the Fermi surface and
quite sensitive to the magnitude of the scattering time. This is best seen by
noting the effect of warped surfaces of the form{I-4) on conductivity; Olson
and Rodriguez give

¢ = Ne? 7/m" [1-2(0.190 + 1.85t2)] (L-10)

where N is the number of carriers/volume and 7 is the isotropic scattering
time. If we remember that t is of the order of unity and that | rl is less
than .1 (Table 1-1) we now see that warping of a closed Fermi surface will
change the conductivity by less than 2 percent from the value for a spherical
surface. Since the observed effect of pressure on the conductivity of alkalis
is to produce changes of the order of 50 percent in 15,000 atmospheres, we
can see that changes in T and m* far outweigh those in the shape of the

surface.

On the other hand Eq. (I-5) for the magneto-resistance shows that
this property is quite sensitive to the shape of the surface. Unfortunately, the
magnitude of the magneto-resistance effect at room temperature is too small
to be measured by ordinary techniques. Kapitza did manage to observe the
magneto-resistance of sodium and lithium at room temperature by using
pulsed fields of 300 kilogauss; he observed changes of resistance of less
than 2 percent [ 50]. Since the effect goes as HZ ordinary dc (magnetic
fields of 10 to 30 kilogauss would produce resistance changes in the range
from .002 percent to .02 percent. Reducing the temperature to the liquid
nitrogen range would not produce a significant improvement. Kapitza
found a 15 percent effect in lithium at this temperature; this would become
a .15 percent effect with a 30 kilogauss dc. field.# It is only in the helium
temperature range that the magneto-resistance becomes large enough, of
the order of 10 percent, so that a pressure experiment might be feasible;
however, in this range the available pressure is limited, as we have men-

tioned.
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Another transport property of interest is the Hall effect. The
Hall constant, R, is defined by

E =RJ H (I-11)

where E is the transverse electric field, Jx the current density, and HZ
the magnetic field. Figure l-1 shows the geometry involved; x, y, z, indicate
direction. Derivations of the Hall constant based on a picture of free electrons
give

R = 1/ Nec (1-12)
where ‘e is the charge of ti1e carriers and c the velocity of light. More
accurate treatments of the Hall effect involve solving the Boltzmann transport
equation and knowing E (K) and 'r(-fc.). The Hall constant is then given as the
quotient of two integrals involving the scattering time and energy derivatives
taken over the Fermi surface[51]. It can be shown that for T (-lz) = T(E) and
for spherical energy surfaces, E (K) = E (| T(.I ), the Hall constant is still
given by Eq. (I-12). In general, anisotropy of the scattering time and of the
energy surfaces will alter the expression for the Hall constant. We may then

write
sk
R = 1/Necn (1-13)

*
where n , which we shall refer to as electrons/atom, is a factor which depends
- ->
on the anisotropy of 7(k) and E (k), and is of the order of one. In Table 1-1
sk
we have listed the values of n for the alkalis, computed from the values of the

Hall constant given in the literature. From the computations of Olson and

‘Rodriguez one can obtain the Hall constant for an energy surface of the

form (I-4)and an isotropic scattering time. This gives

* _ [1-r%(.190 +1.85t%) 1%
1-r%(5. 14 + 81. 2 t%)

(1-14)

%
We see that the change of n from its free electron value of unity depends

s
only upon the warping of the surface. Expression (I-14)will always give n

larger than unity. When we discuss our results in Sec.. IV we shall give an

&
expression for n which takes into account both warped energy surfaces and
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P
anisotropic scattering times; in that case n may be either greater or

less than one. We shall see there that the magnitude of the scattering time

s
does not enter the expression for n ; only its anisotropy. Except for a direct

volume dependence of N, we can attribute any changes in R with pressure

to changes in n*; these changes are due to changes in the anisotropy of the
Fermi surface and/or the anisotropy of the scattering time.  If the measure-
ment were performed in the impurity scattering range, where the scattering
time is probably nearly isotropic, the results of a pressure measurement
could be interpreted more directly in terms of changes of the anisotropy of
the Fermi surface; in a room temperature measurement the scattering is by
the lattice and we shall have to consider the effect of a possible anisotropy in
the scattering time arising from the elastic anisotropy of the crystal. We
shall see in Sec. IV that this can be quite important.

The expression (l-14) shows that the Hall effect is quite sensitive to
anisotropy of the Fermi surface, conaiderébly more so than the conductivity
(1-8). It can be measured at room temperature, single crystal samples are
not necessary, and since the scattering is dominated by the lattice, small
amounts of impurities are not important. We decided to study the Hall effect

in the alkali metals under pressure.
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II. Experimental Techniques

A. Electrical
—_—

1. The measurement problem.

The voltage produced by a Hall effect sample is

Vy = RHI/t

Hall voltage
magnetic field in gauss
current in amps
t - thickness in cm
- R - Hall constant in volt-cm/amp - gauss

‘We can estimate the Hall voltage produced by a typical alkali, sodium.
Using R = 21x.10" 13

.05 cm, we obtain 'VH = .75 microvolts. As we measure the voltage

volt-cm/amp - gauss, H = 6000 gauss, I = 3 amps, and

produced when the magnetic field is reversed we actually measure ZVH or
1.5 microvolts.

If we estimate a change of about 10 percent in the Hall voltage in

15,000 kg/c:m2 and wish to measure this change to at least 10 percent, we
must resolve changes of 1 percent in V., . This means we need a measuring
system that can resolve 10”8 voits.

2. The choice of an ac or dc method.

Hall voltage measurements may be performed using either an ac or
dc system. In an ac system a dc magnetic field and an ac sample current
can be used. The Hall voltage is then an ac voltage having the same frequency
as the sample current. Such a system is described in detail by Lavine [1,2].
Its advantages include the elimination of contact, thermoelectric, and thermo-
magnetic potentials. Furthermore, ac amplifiers provide sensitive detectors.
Lavine also pointed out a serious defect of the ac method. The high currents,

of the order of an ampere, flowing through the sample cause it to vibrate in the
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magnetic field. This induces spurious voltages in the system, since the
sample with its associated Hall leads forms a closed loop vibrating in a
magnetic field. These vibrations may be eliminated by clamping the sample
rigidly. In our work we used originally a modification of Lavine's equipment.
Considerable effort was spent in developing ways of mounting the sample that
would eliminate vibrations. Unfortunately, clamping the sample to prevent
vibrations conflicts with the requirement that a pressure sample be mounted

in such a way as to leave it free to expand and contract. We were finally able
to mount our specimens so as to prevent audible sample vibrations. When we
encountered the problem of irreproducibility on samples of rubidium we decided
to look for spurious ac voltages by doing a dc check measurement. The dc
measurement on rubidium still gave results that varied from sample to sample.
This difficulty was overcome when we prepared the sample so as to avoid
oxidation, in the manner described below. The dc measurements generally
gave less scatter on Hall voltage vs. pressure curves than the ac ones,
although at least part of the difference may be due to the better sample prepara-
tion techniques used later in the experiment. However, the dc measurement
also gave resistance as a function of pressure, while the ac one did not; in
addition it was faster and more convenient to use and eliminated the possibility
of spurious voltages due to vibrations. We finally adopted the dc measuring
system to be described. The agreement between the ac and dc results will

be discussed in Sec. III, but was fairly good.

3. Description of the dc measuring system.

Figure 2-1 shows a block diagram of the entire electrical system.
The sample current of 3 amperes is provided by two six volt storage cells
in parallel. Sample current was measured by a Weston model 931 ammeter.
This meter could easily be read to 1/3 percent at full scale. The voltage
produced at the Hall probes was measured by the Rubicon potentiometer and

galvanometer amplifier described below.

The Rubicon No. 2767 microvolt potentiometer [ 3] is an instrument
in which the spurious thermal electromotive forces originating within the
instrument have been reduced to less than .01 microvolt.. It incorporates

a reversing key which instantaneously changes the polarity of the galvanometer
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connections. The potentiometer is adjusted until reversing the galvanometer
connections produces no deflection at the detector. In this way the presence
of constant thermal voltages in the detector circuit does not affect the potenti-
ometer balance. Furthermore, the detector will see twice the out-of-balance
voltage while the potentiometer is being balanced and the detector sensitivity
is effectively doubled.

Use of the Rubicon potentiometer required that we have a detector
which would resolve a voltage of .01 microvolt., To achieve this sensitivity
‘we constructed the galvanometer amplifier pictured in Fig. 2-2. Light from
the source, S, passes through the aperture, A, in the partition separating the
light source from the rest of the galvanometer. It is focused onto the mirror
of the primary galvanometer, G, by a double convex lens, L, reflected onto

the plane mirror M, and forms a circular spot on the two matched "EEL"

selenium photocellsf, P1 and PZ' The photocells are mounted on a modified

microscope stage'ﬁ', T, and can be moved in the direction of the arrows by
turning the shaft- R. -The photocells are connected so that their voltages oppose
and the output of the pair is fed to the secondary galvanometer. The shaft R is
used to move the photocells until there is no deflection on the secondary galvano-
meter when there is no input to the system. A signal at the primary galvano- -
meter G changes the light balance on the photocells and produces a deflection

of the secondary galvanometer.

The galvanometer amplifier was built on a piece of 2 inch steel
channel 24 inches long and was enclosed in aluminum. The light source, S,
and its associated transformer, X, were separated from the rest of the system
by an aluminum partition which prevented light from the source from reaching
the photoceiis and also prevented convection currents from the light bulb from

moving the galvanometer mirror. The primary galvanometer was supported

T Electronic ‘Equipment Limited, 101 Leadenhall St., London E.C. 3,
England.

Tt Micronta mechanical stage, available from Radio Shack, Inc.
Boston, Mass.
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by three pads of 1/4 inch thick rubber under the leveling screws. The
entire unit rested on a piece of 3/4 inch thick steel plate supported by a
heavy 2' x 2' table. The latter was insulated from the floor by a piece of
sponge rubber 1 inch thick and one yard square. These precautions were
necessary to eliminate the sensitivity of the system to vibrations in the floor

caused by normal building activity.

The primary galvanometer, G, was a Leeds and Northrup type

HS unit with a voltage sensitivity of 1.8 x 10'7 volts/mm for 1 meter path
length. The optical path length in the galvanometer amplifier was about .3

meter so the sensitivity of the primary system is approximately 60 x 10'8
volts input/mm deflection at the photocells. The sensitivity of the entire
system, as measured by using a voltage divider to give an input of 10'7 volts
and noting the secondary galvanometer deflection, is approximately 10'8
volts/mm. The gain of the system is approximately 60. The secondary

galvanometer was a Leeds and Northrup 2430G

The detection system could have been made more sensitive by improving
the optical system. Galvanometer amplifiers have been made with gains of
2000-3000 [4]. Such gain is difficult to use, because of attendant drift, and
negative feedback is often used to reduce the gain and increase the stability.
The sensitivity we achieved using a simple optical system without negative
feedback was adequate and no improvements were made. We considered the
galvanometer amplifier preferable to commercially available chopper
amplifiers, which had a noise level of . 03 microvolt and were moderately

. expensive.

The magnet was of laboratory design, with 7 inch pole pieces and
a 2 inch gap. The power supply was unregulated, using selenium rectifiers
in a bridge circuit. The maximum field available was 8750 gauss. The
magnet was calibrated by proton resonance, but the field was set by adjusting

the current measured by a Weston Model 430 1/4 percent accuracy ammeter.

The compensator is a loop of wire with an enclosed area of about
one square inch mounted on a formica rod and placed in the magnetic field.

The coil can be rotated so that the enclosed flux varies. Small variations in
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magnetic field, caused bycurrent fluctuations, induce varying voltages in
the loop formed by the Hall leads and the sample. The compensator coil,
connected in series with the Hall leads, is rotated until theyoltage induced in
it exactly cancels that induced in the sample loop and the drift disappears.
The magnitude of the field fluctuations, as measured using a search coil and

the galvanometer amplifier, was about 4 gauss at a field of 3700 gauss.

These field variations of approximately . 1 percent would not cause
measurable variations in the Hall voltage. On the other hand, the voltages
induced in the Hall loop are quite measurable; they are of the order of .1
microvolt. The compensator eliminated the effect of the field fluctuations
‘without actually regulating the power supply. Slow, steady drifts of mag-
netic field can change the Hall voltage but can be detected by monitoring the

magnet current.

4. Spurious voltages.

Low level Hall voltage measurements are made difficult by thermo-
electric and thermomagnetic effects which can produce spurious voltages.
Fortunately, most of these effects were not of concern to us, as long as they
did not change in the time required to take a reading. The voft'g‘\ge measured

by the potentiometer is

V=VR+VH

where

+ V(H) + V(H?) + y ' (II-2)
|

- voltage due to the IR drop between Hall probes

g Hall voltage
V(H) - all other voltages linear in H
V(H?) - all voltages quadratic in H
VS - spurious voltages which are independent of H
Calling the voltage produced with the field in one direction -V1 and that

with the field reversed .Vz we have

lv1 - VZI; | 2v, + 2V(H) |
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provided we have made the measurements so quickly that VR and VS have

not changed.

Table 2-1 defines three thermomagnetic effects; AT and V refer to
the amount that the temperature of the potential at point A in Fig. 1-1 is
greater than that at point B. The Ettingshausen effect is the transverse
temperature gradient which occurs when we have a longitudinal current and a
transverse magnetic field; it is the thermal analogy of the Hall effect. The
Nernst effect is the transverse voltage produced when there is a temperature
gradient along the sample and a magnetic field perpendicular to it. The
Righi-Leduc effect is the transverse thermal gradient caused by the same
conditions. The effects are evaluated for the values of field, current, and
dimensions corresponding to our experiment. The value of dT/dx used,
1° C/cm, is almost certainly too high, as the mass of the bomb surrounding
the sample acts as a constant temperature bath. As the Ettingshausen and
Righi-Leduc coefficients are not known for the alkalis,we estimate the effect
by using the value for copper [5]. These coefficients are probably smaller in
the alkalis, where the Fermi surface is more nearly spherical than in copper.
The thermoelectric power of a potassium-steel thermocouple is 22 microvolts/
°c [ 6]; hence the voltage due to a Righi-Leduc temperature of 1.4 x 10'3 “c
is .03 microvolt.. For a more reasonable value of dT/dx we can ignore the

thermomagnetic effects.

The Nernst and Righi-Leduc effects are usually eliminated by reversing
the sample current and making a measurement before the temperature gradient
can reverse sign. This requires a reversing switch in the input to the potentio-

meter as V the dominant term in V, changes sign. Since such a reversing

R ’
switch could introduce thermoelectric voltages, we decided to do the measure-

ment without current reversal.

Throughout the measurements we tried to maintain a precision of
1 percent on an individual voltage measurement. This figure was dictated
to a large degree by the potentiometer, which was specified free of thermal
voltages greater than .0l microvolt. Since two readings were needed for
each value of 2 VH obtained, this voltage was obtained within .02 microvolt,

or to a precision of about 1 percent for typical values of 2 VH .
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_ -We can estimate the effect of the various parts of the system on
the precision of the measurement. The potentiometer, as mentioned above,
may contribute thermal voltages of .01 microvolt;. Most of these probably
‘stay constant over short periods of time, with the exception of the emf.

due to the reversing switch, which may change each time the key is pressed.

The magnet current can be set to 1/3 percent. A regulated power
supply was not used, as frequent checking of the magnet current minimized
the effect of current drifts and allowed us to achieve the desired precision.

- Successive readings of VH + IR at constant pressure varied by
amounts ranging from 1 part in 500 to 1 part in 5000. Since the IR drop is
of the order of 50 microvolts, this corresponds to changes of several hundredths
of a microvolt. This change is too large to be due to magnetic field variations
and is due either to sample current fluctuations or to thermal voltages caused
by variations of sample temperature. We did not isolate the cause of these
changes but minimized their effect by taking pairs of voltage readings rapidly.
These drifts were the most important limitation on the precision of the individual

Hall voltage measurements.

- Slow, visible, oxidation of the sample sometimes occurred. Such
oxidation would decrease the thickness of the sample and cause the atmospheric
pressure Hall voltage to increase with time, as was observed. Such oxida-
tion during a run can cause hysteresis in the 'VH vS. pressure curves,
reducing their precision. We found we could obtain some runs with a hysteresis
of less than 1 percent.

On successive runs of the same sample the normalized Hall voltages
at fixed pressure generally differed by less than 2 percent. In most cases,
- with the exception of potassium, the reproducibility from sample to sample was
about the same as from run to run; specific comments on each metal are
included in Sec . III. Since a good run with 1 percent precision on individual
values of VH defined a curve to better than 1 percent, the ultimate limit on

the precision of the measurements came from the presence of some hysteresis

in most runs and from the variation between samples mentioned above.
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Table 2-1

The Ettingshausen, Nernst and Righi-Leduc Effects
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B. High Pressure Apparatus

The high pressure system is shown schematically in Fig. 2-3.

The hydraulic ram and the intensifier were obtained from Professor Bridgman.
A hand pump is used to force oil into the intensifier cylinder. The intensifier
compresses the pressure transmitting fluid, pentane, in the low pressure, high
compressibility region. After a pressure of about 1500 kg/c:m2 is attained,
the large hydraulic press is used to move the piston and piston head down the
upper cylinder, compressing the pentane further. After the piston head has
moved about 1/2 inch it is below the intensifier connection and the latter is no

longer subject to high pressure.

The upper cylinder is connected to the beryllium copper bomb, sus-
pended between the magnet pole pieces, by 1/8" O.D. x .020" I.D., stainless
steel tubing. The bomb, Fig. 2-4, was used at pressures up to 15,000 kg/cmz.

It was eventually destroyed in an explosion and replaced by one of identical

design. We believe pentane under high pressure leaked past the terminal plug
and remained temporarily sealed in by the drive plug. Pressure was trans-
mitted to the thin walled (3/8') portion of the bomb and ruptured it.

The sealing arrangement at both ends of the bomb is shown in Fig. 2-5.
Initially we were able to seal both ends of the bomb using only lead and alumi-
num washers; eventually the packing hole belled out and we needed to add a

cold rolled steel washer to seal reliably.

The terminal plug used was a modification of the design normally
used in this laboratory. Because of the high sample currents we needed,
larger cones and wires were used. The Bridgman tubing seal at the other end
of the bomb needed to be almost completely within the .625 inch packing hole
to prevent it from mushrooming or shattering under pressure. Detailed des-
criptions of the high pressure techniques. used may be found in the literature
[ 7.8].

The pressure was determined by measuring the change of resistance
of a manganin coil on a bridge [9]. The gauge coil was calibrated against
another manganin coil which served as a laboratory standard. At the conclu-

sion of the measurements we checked our gauge against the mercury transition
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at 7640 kg/cm2 (at 0°C) and found a difference of 90 kg/cmz. This error
may be due to the fact thaé the manganin gauge was in the apparatus when
the beryllium-copper bomb exploded and the resulting rapid pressure change
may have altered the properties of the manganin slightly. The pressure
measurements are therefore accurate to better than 1.5 percent. The
techniques involved in the mercury calibration have been described by
Bridgman [ 10].

C. Sample Preparation

The alkali metals are highly reactive and very compressible; these

characteristics'made.it difficult to prepare suitable samples of the alkalis.
-Since the alkalis react rapidly with oxygen, whenever possible,electrical
measurements on them have been performed by enclosing them in glass.

Hall @ffect. samples have been made by forming thin molds of glass or quartz
containing platinum electrodes and distilling the alkali metal intothem [ 11,'12].
This procedure protects the surface of the sample and allows the metal: to

be purified by distillation. It is not, however, useful for pressure work. The
glass constrains the alkali and prevents it from contracting freely under pressure.
The pressure in the sample is not necessarily hydrostatic. Finally, pressure

can break the contacts to the thin platinum electrodes.

Bridgman, in his work on the pressure dependence of the resistance
of the alkali metals was able to make wires of alkalis and connections to
them by means of spring clips [ 13]. This leaves the sample free to contract
under pressure, The contacts obtained are not always reliable and may open
under pressure. This technique is not useful for Hall measurements where
the mounting must be such as to maintain the sample's shape and orientation
under pressure. Furthermore, some attempts to make samples of this kind
show it is extremely difficult to attach four spring clip contacts to a sample

without tearing it.

- The sample preparation method finally adopted represented several
compromises. In order to expose the metal to the pressure fluid we had to
accept some surface oxidation. In order to make reliable contacts and to
keep the sample orientation fixed it was necessary to constrain the sample'

somewhat.
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The sample holder that was finally used iz shown in Fig. 2-6. The
holder is designed to push onto a four-terminal plug. The current contacts
are pieces of stainless steel which fit over either end of the alkali sample
and are tightened down with screws. This construction assures a large area,
low resistance contact and reduces the possibility of heating at the contacts.
The Hall probes are an integral part of the sample and have a width of about
1/16 inch. They are about .l/8 inch long and terminate in "ears" about
1/8 inch ‘wide and 3/4 inch long. There are two 3/32 inch diameter stainless
steei pins imbedded in the formica body of the sample holder; part of the
formica and of the stainles# &teel pins has been cut away to provide a flat metal
contact on either side of the holder. The '"ears' of the sample are bent over
the holder and clamped to these contacts by the two stainless steel plates., . Thus
a large area contact is achieved for the Hall leads even though the actual probes
remain thin. The groove milled in the formica holder was used for forming
samples of rubidium #nd cesium. These metals were mojded till they filled
the groove and then scraped until the surface was flush with the sample holder.

This gave a reasonably uniform sample thickness.

.In the .case of lithium, sodium, and potassium, the thickness of the
sheets of alkali was measured by a .00l inch dial comparator gauge. Samples
varied in thickness by about + .00l inch over their length. Since most
samples were over .010 inch thick, the samples were thus uniform to
+ 10 percent. In the case of rubidium and cesium, which were formed

directly on the sampke holder, the thickness was not measured.

-We were primarily interested in the relative changes of the Hall
voltage under pressure, rather than its absolute value. However, the length
to width. ratib in our case, approximately 3, is such that the difference
between our measured voltage and the true Hall voltage is less than 1 percent.
This one percent correction is computed for a geometry applicable to a semi-
conductor; namely, the ends of the samples are equipotentials and the Hall
voltage electrodes are point probes [ 14]. Neither of these conditions are
exactly fulfilled in our case; in particular, the finite size of the Hall probes
can distort the cuirent flow lines so that they are no longer parallel to the

long side of the sample.
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Non-uniformity in the thickness of the sample introduces uncertainty
in the absolute value of the Hall constant, but as long as the sample geometry
is unchanged under hydrostatic pressure the relative change in the Hall con-
stant is unaffected. The sample should be flat and without '"wrinkles'; for
the latter can give a magnetic field normal to wrinkled portions of the surface
that is less than the applied field. If such wrinkled portions straighten out
under pressure, the orientation of portions of the sample is effectively
changed and a spurious pressure dependence would result. Such behavior
‘would 'probably-make itself evident through hysteresis in the Hall voltage vs.

pressure curves.

The samples were formed and mounted in a bath of Deo Base '1', a
light mineral oil. Rubber gloves were used in order to avoid contaminating
the Deo Base with moisture. This technique was adopted after some attempts
to make samples in a dry box filled with nitrogen gas. The metal surfaces
remained cleaner and assembling the sample holder was easier in the Deo
Base bath. In the case of lithium, sodium, and potassium a slice of metal
was cut from a chunk of alkali. It was rolled into a sheet about .020 inchg:
thick, bent over the sample holder and contacts attached. The sample was
then trimmed to form the Hall contacts and the ''ears' shown in Fig. II-6.
The sample holder was next pushed onto the four-terminal plug and the entire
unit was quickly transferred to the bomb where the pentane prevented oxida-
tion. The film of mineral oil remaining on the sample protected it from

oxidation during the transfer.

- Each of the alkali metals presented some special problems of
handling. Lithium was the hardest metal and was difficult to cut and roll.
Furthermore, since lithium did not deform readily, it was hard to get the
stainless steel current contacts to dig into the metal and form large area,
low resistance contacts.. This was remedied by placing a piece of sodium
between the lithium and the stainless steel contact; the soft sodium made
good contact to both the lithium and the stainless steel.

t Available from Howe and French, Boston, Mass.
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Sodium and potassium were not difficult to handle under oil. After
the Deo Base had been purified by reacting alkali chips with it, reasonably
clean surfaces could be maintained. These metals, as well as lithium, were
soft enough to allow sheets of thickness from .007 inch to .035 inch to be

made using a small adjustable set of rollers.

The lithium and potassium were cleaned by heating to above the

melting point under forepump vacuum. The sodium was cleaned by melting

it under oil. Chunks of the metal were placed in a small stainless steel boat
about 1/2'" by 1/2" by 3'" long. Inclusions of oxide or dirt rose to the top of
the ingot and could be removed. Better purification using distillation was not
considered necessary since the metal surface would suffer some oxidation as
soon as it was placed in oil. . We were concerned with producing samples that
were macroscopically homogeneous, but not necessarily pure in the sense of
having low residual resistance. As long as the impurity scattering was small

compared with the lattice scattering at room temperature, the sample was

Mpure' as far as we were concerned. The lithium was obtained from

Fairmount Chemical Co., the sodium from Merck and Co., and the potassium
from Mallinckrodt Chemical Co.

Rubidium and cesium were considerably more difficult to handle than
the other alkalis. These metals, sealed in one gram glass vials, were
obtained from A. D. MacKay Co. and Fairmount Chemical Co. We initially
tried to remove the metal from the vials by placing them in a heater and letting
the molten liquid flow out under oil. This was not satisfactory as we obtained
several small globules of metal, each of which was too small to make a sample.
If we pressed several globules together the resulting sample would have an

oxide film inside it.

These metals oxidized rapidly even when kept under oil at room
temperature. Furthermore, the oxide was soluble in the metal [ 15]. As
oxide formed, it dissolved in the pure metal forming an alloy which was

liquid at room temperature.

The final solution was to make the rubidium and cesium samples in
chilled oil. The tray containing the Deo Base was placed on a block of

polyfoam which had been hollowed out and filled with dry ice. The oil in the
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tray was maintained at a temperature of 0°c - 5% . Both the Deo Base and
the pressure transmitting fluid, pentane, were purified by reacting them with
globules of sodium-potassium alloy, a liquid. The metal was removed from
the glass vial by pushing it out with a small formica rod. The slugs of metal
obtained were molded by hand, using gloves, to approximately the shape and
size needed, placed on the sample holder and contacts made while the metal
surface was still clean. The surface generally had a dull silver-gray color,
indicating some oxidation. Unoxidized rubidium and cesium have a bright silver
color, while metal immersed in uncleaned oil would become black. The sample
surface was further protected by placing some silicone stopcock grease on it
and then covering it with a sheet of .003 inch Mylar plastic, the latter held
down by the screws which tightened the current contacts. The sample was

transferred to the bomb in the same way as the other alkalis,

D. Measurements as a Function of Temperature

The temperature measurements on lithium were made using a glass
dewar with 2 inch O.D. and 1-1/2 inch I.D. and the unit shown in Fig. 2-7.
The unit fitted inside the dewar and a seal was made at the top using a rubber

+ °

around the glass tube formed a closed chamber which could be connected to a

gasket made from a plurostopper The region above the liquid nitrogen and
mechanical pump. By pumping on the liquid nitrogen it could be cooled below
its freezing temperature, to about - 216°C. The region above the glass tube
was sealed using the brass plate and an "0" ring. It was pumped out and
filled with helium exchange gas. A formica rod, one end of which was made
into a sample holder similar to the pressure one, screwed onto the top brass
plate. ' A heater, consisting of a piece of copper tubing wound with resistance
wire, fitted around the sample holder. The temperature was measured using
.a copper-constantan thermocouple located at the sample. Temperatures
below - 196°C were measured by calibrating our thermocouple at the nitrogen
point and using the value dE/dT = 16 microvolts/°C given by Scott [16] for

the thermoelectric power at - 196°C. The electrical connections were

T Available from Bethlehem Apparatus Co., Hellertown, Penn.
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brought out through a Stupakoff t seal; the thermocouple and Hall voltage
leads were brought right through the pins and sealed in with wax, avoiding

.extra junctions.

Below liquid nitrogen temperature, an equilibrium temperature was
obtained by allowing the mechanical pump to pump continuously on solid
nitrogen. No attempt was made to maintain a vapor pressure higher than
that obtained by continuous pumping, i.e., to obtain intermediate temperatures.
Temperatures above liquid nitrogen temperature were obtained by setting the

current through the heater to a fixed value and waiting for thermal equilibrium.

Because the Hall constant of sodium, potassium, rubidium, and
cesium did not vary significantly between room and nitrogen temperatures, no
attempt was made to measure it at intermediate temperatures. Sodium and
potassium were measured by immersing the formica sample holder rod
directly into the dewar filled with liquid nitrogen. Cesium and rubidium were
measured using the same sample holder and terminal plug as in the pressure
experiments, A piece of formica tube, closasd at one end, was filled with
mineral oil and the sample holder enclosed in it, This served to protect
these highly reactive metals from accidental exposurs to air,

t Available from Stupakoff Ceramic and Mifg. Co., Latmore, Penn.
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1II. Experimental Results

sk
A. The Hall Voltage and n vs. Pressure

The Hall effect data were taken by measuring the Hall voltage at
fixed magnetic field (6310 gauss) and sample current (3 amperes) at
approximately twelve points in the pressure range from 1 to 15,000 kg/cmz.
Only one value of the magnetic field was used since our earlier ac measure-
ments had verified the anticipated linear relation between VH and field.
Figure .3 -1 shows a typical voltage vs. field curve, obtained on sodium by
the ac method. The thickness of the samples ranged from .007 inch to
.050 inch. No absolute values of the Hall constants will be plotted on the
pressure curves because they would depend on a relatively inaccurate thickness
measurement and because our prime interest was in relative changes of the

Hall constant. The temperature was slightly below room temperature, because

the bomb was in contact with the cooled magnet yoke.

Although the curves we present are for dc measurements, in some cases
there are also data available from the earlier ac measurementll. The ac data
were obtained by measuring VH ve, field at a fixed pressure and plotting the
slope of this curve ve, pressure. These data are discussed where applicable.
-The scatter on the ac data is generally greater than in the dc case. Further-
more, there is always a question as to whether the ac data is affected by
spurious voltages induced by sample vibrations; such vibrations would be
damped by the increased viscosity of pentane under pressure and could give
a pressure dependent voltage. Much of the ac data were obtained on samples
that had not been cleaned by melting and outgassing under vacuum and con-
tained inclusions of oxide or gas. The dc data are based on cleaned samples,

as free of oxide and large inhomogeneities as we could produce.

The lithium data are from the two best runs (those with the least
scatter) out of four. The curve for one of these runs is shown in Fig. 3-2.
The two runs were on different samples and gave Hall voltage decreases of
1.4 percent and 1.5 percent in 10,000 kg/cmz. . The slopes were obtained

using a least squares fit.

If all four dc runs are considered,the average of the least square
slopes gives a decrease of 1.9 percent in 10,000 kg/c:mZ with a root mean

square deviation of .4 percent. The only ac data are based on measure-
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ments on unclean material and on curves with more scatter. Seven runs

on five different samples give an average decrease of 3.5 percent in

10,000 kg/c:mZ with a root mean square deviation of .8 percent. The slopes
of the individual curves were obtained from a straight line fitted by eye,
rather than by least squares as in the case of the final dc data.

The sodium data are based on four runs on three different samples ranging
in thickness from .007 inch to .026 inch. The average of the least square
slopes is a decrease of 3.4 percent in 10,000 kg/cmz. The root mean square

of the deviations is .4 percent. A typical curve is shown in Fig. 3-3.

. The ac data for cleaned sodium, based on three runs on two differeht |
2
with

an rms deviation of .5 percent. The data on uncleaned sodium, based on

samples, gives an average decrease of 3.3 percent in 10,000 kg/cm

three runs, gives a 4.7 percent decrease with an rms deviation of .6 percent.

The slopes in the ac case again come from visual fits.

The data for two potassium samples are shown in. Fig. 3- 4. Despite
many runs the curves for different samples did not agree. The curves are
chosen to indicate the difference between data obtained from different sampies
‘and the approximate range of the value of VH at 15,000 kg/cmz. - A total of
twelve runs on seven samples was performed. Since some of the curves were
not linear, the percentage decrease in »VH at 10,000 kg/cmz was used as a
rather arbitrary way of characterizing them. The average decrease is 6.2

percent; with an rms deviation of 1.6 percent.

- Twelve ac runs on seven samples of cleaned potassium yielded a decrease
of 7.9 percent in 10,000 kg/cmz with an rms deviation of 2.9 percent. The
lack of reproducibility between different samples makes it impossible to

_compare meaningfully the ac and dc data, other than to say they are not in

gross disagreement.

.The ac measurements at one point seemed to indicate a correlation
between the size of the pressure effect and sample thickness. Accumula-

tion of more data did not support this correlation. In Fig. 3 -5 we show

the percentage decrease in ’VH in 10,000 kg/cmz vs., sample thickness for

the twelve dc runs on potassium and for the four dc runs on sodium.
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Although the data on potassium were not as reproducible from sample to
sample as the sodium data, and the decrease in VH at a fixed pressure is
not an entirely satisfactory way of describing the curve, we include these
data because of the large number of runs and the wide range of thicknesses

covered,

The resistance versus pressure curve for potassium was anomalous
insofar as it consistently differed from the data of Bridgman [1]. Our
value of .4 for the normalized resistance at 15,000 kg/cmz is in sharp dis-
agreement with Bridgman's value of .22. Figure 3.- 6 shows a typical curve
of normalized resistance vs. pressure for potassium, as well as the data of

Bridgman.

We suspected that our sample holder might be acting as a constraint on
the compressible potassium and decided to repeat Bridgman's experiment,
which used a free wire of potassium. We made a potassium wire by extruding
the metal through a brass die and attached four Be-Cu contacts. Although
difficulty with the contacts caused sample current fluctuations and made it
impossible to get accurate curves, the value of the normalized resistance at

15,000 kg/cmz, .4, was confirmed.

As the behavior of resistance versus pressure was the same for a free
wire and for a sample mounted on our holder, we concluded that our sample
holder was not constraining the specimens and that the Hall voltage data
obtained with it were representative of free samples of alkalis. The fact that
the rubidium resistance data, discussed below, are in substantial agreement
with Bridgman's results even though rubidium i more compressible than
potassium also indicates that the sample holder is not acting as a constraint,

Figure 3 -7 shows a typical Hall voltage curve for rubidium. After
sample preparation techniques had been revised so as to avoid working oxide
into the metal, reproducibility was good. The final data are based on two
samples used in a total of five runs; in four of these runs the decrease of
VH in 15,000 kg/cmz 'was between 12 percent and 13 percent while in the
fifth it was 9 percent. All the ac data on rubidium were taken before the
sample preparation techniques had been improved and show the same lack of

reproducibility as the early dc data.
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Figure 3.-8 shows a curve of normalized resistance vs. pressure for

rubidium as well as the data of Bridgman for bare wires of this metal. The
resistance data sometimes showed hysteresis, but the shape of the curve
agrees with Bridgman's work. Many runs were made before we learned

to make clean, one-piece, samples which gave reproducible Hall voltage
data; the resistance data, on the other hand, were much less sensitive to the
method of making the sample. Thirteen runs on various rubidium samples
gave an average normalized resistance at 15,000 kg/cmZ of .35 with an
rms deviation of .036. It should be pointed out that one can have hysteresis
in the resistance curves without having it in the Hall voltage curves, since
any slight tearing at the Hall leads changes the effective spacing between the
voltage probes and thus the measured IR drop. The Hall voltage depends
only on the thickness of the sample and will not show hysteresis because of
tearing. The location of the voltage probes, appropriate for a Hall measure-
ment, gives probe spacing comparable to the probe size and is not a good
geometry for resistance measurements. In view of this, the agreement with

Bridgman's data is satisfactory.

A typical Hall voltage curve for cesium is shown in Fig. 3-9. Two

- samples were used and a total of six runs performed. The measurements
‘were at approximately 14°C. The normalized Hall voltage at 15,000 lv;g/cmZ
was between .61 and .64 for all six runs and a well defined curve was

obtained. The rms deviation on intermediate points is about 1.5 percent.

. The resistance of cesium under pressure exhibited considerable
hysteresis and it was only after several runs on the same sample that the
resistance minimum found by Bridgman became apparent. Because of the
hysteresis the data could not be checked quantitatively against Bridgman's
data; the shape of the curve was in agreement with his work. The possibility
of tearing the sample Hall leads is even greater here than in rubidium, since
the compressibility is greater.

The curves of n* vs. pressure were obtained from the experimental

curves using the relation

(LI-1)
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where t(P) is the linear dimension of the alkali metal as a function of pres-
sure, V(P) is its volume, and VH(P) is the normalized Hall voltage.

V(0) = t(0) = 1. t(P) corrects for the change of Hall voltage due to the
change of thickness of the sample under pressure and V(P) corrects for the
change of electron density under pressure. The values of V(P) are taken
from Bridgman's compressibility data [ 2,3]; the values of t{P) are computed.

*
from V(P). n is normalized to unity at atmospheric pressure.

The curves of n" for lithium and sodium shown in Figs. 3. 10 and 11
were computed from the average of the least square slopes of VH Vs, pr*essure
for the four sodium samples and two lithium samples. The curves of n for
potassium, rubidium, and cesium, shown in Figs. 32 - 12, 13 and 14, were
obtained from values of VH read from the curves for specific samples. This
was done as a matter of convenience, as we were interested in fitting the
general shape of the n* vs. pressure curve and for this purpose the curve for
a typical sample was sufficiently accurate. In the case of potassium, where
the Hall voltage curves differed between samples, we give n* for the same two
samples III-99 and III-115 whose curves of VH V8. pressure appear .in,

Fig. 3-4. These curves indicate the direction, size, and range of the effect
in potassium, but because of the limited reproducibility their details cannot be

considered meaningful.

x
B. Hall Voltage and n vs. Temperature

Figure 3 -15 shows n* vs. temperature for lithium. The values of
n* are computed directly from the measured values of VH by using the value
of the thermal expansion coefficient given by Bridgman [2]. All the points
were taken as temperature increased, since when the heater was on,the nitrogen
boiled away too rapidly to permit a series of points at decreasing temperatures

to be measured.

Table .3 -1 shows the values of normalized Hall voltage at room and
nitrogen temperatures for sodium, potassium, rubidium, and cesium. Values
%
of n are also given except for the case of cesium, where no value of the

thermal expansion coefficientsis available [4].
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(@ f‘&bgolute Values of n*

In the course of interpreting the results we became concerned with the
absolute value of n*; in particular we noticed that the literature values of
time Hall constant for sodium and potassium gave n* greater than unity
(Table 1-1). We expected, for reasons that will be given in Sec. IV, that n*
should be less than one and decided to compute the absolute value of the Hall
constant from our data where possible. In Fig. 3-16, 17, and 18 we plot
ZVH vs. the reciprocal sample thickness for lithium, sodium and potassium.
In fitting a straight line to the points we gave more weight to those points
corresponding to thick samples, since the relative error in the thickness of

these samples is less.

Table 3 -2 lists the free electron calculated values of the Hall constant,
the values of Hall constant obtained from the slopes of the lines in Figs. 3 -16
to 3 -18, and the values of n*. For convenience we also include the values of
n* corresponding to the literature values of Hall constant, which have already
been tabulated in Table 1-1.

We believe the electrical portion of our measurement is accurate to
better than 2 percent; the accuracy of the voltage measurement is about
1 percent and the current and magnetic field measurements are each accurate
to better than 1/2 percent. The thickness measurement, accurate to .001",
gives a 10 percent error on the thin (.010'") samples and an error of less
than 5 percent on the thicker (.020'" to .050'") samples. Since the latter
were favored in fitting the data, we estimate the error due to the thickness
measurement as 5 percent. The overall accuracy of the measurement is
7 perccnf. The literature values of n* from the work of Studer and Williams

[ 5], who quote an accuracy of 6 percent for sodium and 5 percent for

potassium, disagree with ours. We shall discuss the reasons for expecting

*
n to be less than unity in Sec. IV.
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. Vv sk
H n
Metal Leop. Normalized Normalized
Cesium R.T. 1,000
77°K .973
R.T. 1.000
'Rubidium R.T. 1.000 1.00
77°K .971 1.00
R.T. 1.003
Potassium R.T. 1.000 1.00
77°K .981 .98
R.T. 1.007
“Sodium R.T. 1.000 1.00
77°K 1.000 .97
R.T. 1.003
Table 3 -1

Hall Voltages of Four Alkali Metals at Room and Liquid

Nitrogen Temperatures
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Li Na K
13
calc. x 10
volt-cm 13.5 24.5 46.5
amp-gauss
13
exp x 10 15.5 25.8 49.0
volt-cm
amp-gauss
nr .87 .95 .95
e ;
n from literature .79 1.17 1.11
values of R-
. (see Table I-1)
Table 3.-2

Hall Constants for Lithium, Sodium and Potassium
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IV, Discussion

A. Expressions for n'

The results of the pressure measurements show two important
features. First, for the elements lithium, sodium, potassium, and rubidium
* *
the value of n decreases as the pressure increases. Second, in cesium n

goes through a minimum as the pressure increases.

In Secw I, Eq. (I-13), we saw that for a warped, nearly spherical,
Fermi surface of the type described by Eq. (I-4) and for an isotfopic scattering
time 'T(i;) = T{E), n‘* is always greater than unity. Increases in the absolute
values of the warping parameters, r and t, cause n* to increase. If we con-
sider the Fermi surface to be nearly spherical at atmoeépheric pressureand to -
d_i'stort under pressure, as is suggested by Ham's calculations, then n* is
initially unity and increases with increasing pressure. As our data cannot be
fitted on this model we may consider the possibility that the surface is already
warped at atmospheric pressure and that one of the warping parameters in-
creases in absolute magnitude with increasing pressure while the other
decreases in such a2 manner as to decrease n*. The energy vs. k curves
obtained by Ham are in most cases identical for the 100 and 111 directions
for all lattice constants; this condition fixes the ratio of the warping parameters
and eliminates the possibility that they change in opposite directions. The
magnitude of the warping parameters obtained from Ham's work increases as
the lattice constant is decreased from the atmospheric pressure value. This
is shown later for an expansion of the wave véctdr, 'rather than energy, in
fourth-and sixth-order Kubic harmonics; as far as the change in the magnitude
of the warping coefficients is concerned the two expansions are similar. We
are thus unable to fit the experimental data with a theory that considers only
warping of the Fermi surface in the sense of Eq. (I-4).

- We now consider the effect on the value of n»* of anisotropic scattering
times, T (la and warped Fermi surfaces. This involves the evaluation of
integrals of energy derivatives and scattering times over the Fermi surface;
explicit expressions for these integrals are given by Wilson [ 1]. The work
involved in evaluating them is considerable; fortunately, Cooper and Raimes
have evaluated them for the case of anisotropic scattering times and warped
Fermi surfaces that are described by Kubic harmonics [ 2,3]. These
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authors express the length of the wave vector to the Fermi surface by:
k =k [1+AY, (0,6) +A Y, (08)] . (Iv-1)

The Kubic harmonics Y4(O,¢$) and Y6(0,¢$) are combinations of spherical

harmonics having cubic symmetry; they are given by [ 4]

Y,(0.8) = 5/2 [x* +yt +2% - 3/5] (1V-2)
and
_ 2 2 2
Y, (0,6) = 231/2 [x" y~ 2" - Y, (0,4)/55 - 1/105] (IV-3)
where x = sin 0 cos ¢, y = 8in 0 sin ¢ and z = cos 0 . In the principal

directions the values of the Kubic harmonics are:

Y4(100) =1 Y4(110) = -1/4 Y4(111)=-2/3
Y6(100)= 1 Y6(110) = -13/8 Y6(lll)= 16/9
Similarly they write
Gk ) -k '[1+BY,(0,4) +B, Y, (0,8)]; (IV-4)
JE B o 4 1o '
F
the derivative is taken at the Fermi energy EF . The scattering time is
also expanded in Kubic harmonics;
T=T7 [1+CY, (0,6) +C, Y, (0,4) ] (IV-5)

*
The expression for n may be obtained from Eq., (8) of Ref. [3]:

a® = 1+4/21[9A2-18A(C-B)-(C -B)Z]

2

+8/13 [20A,

2
- 40.4,1C,; ~ By} {0 ~ By) ]

(IV-6)

The expression is correct to second-order in the coefficients of Y4 and Y6 ;

S
We note that the value of n depends on the anisotropy of the scattering

Sk
time, but not on its magnitude. As we expect, n =1 for spherical surfaces
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and isotropic scattering times. Furthermore, we see that the terms in AC

%* ol .
and Al»C1 can give a decrease of n as the warping, (I,A | and IAI l ),

increases, provided ‘A, Al’ C, and -C1 have the proper sign. Once an aniso-
tropic scattering time is introduced, increased warping of the Fermi surface

. A
does not necessarily increase n .

The expression of the warping in this manner has introduced two
more coefficients, B and Bl’ which did not appear when the energy was
‘expanded in Kubic harmonics as in Eq.(I-4) . However, B and B, are not
independent of A and Al' In Appendix 1 we derive the relations between

B, B1 and A, A1 on the assumption that the warping is small.

B. Calculation of the Warping Parameters

We obtained the warping parameters A and A1 from the computations
of Ham [ 5] for the alkali metals. Ham's data give electron energy vs.
ka/2m, where a is the lattice constant, for the 100, 110 and 111 directions.
If the Fermi energy is known, we can use these curves to obtain the length of
the k vector at the Fermi surface for the three principal directions. Equation
(IV-1) can then be used to obtain three equations, from which ko’ A and A1
can be computed.

The Fermi level can be obtained by a simple procedure. The Fermi
surface must enclose a volume in k space which contains all the electronic
states of the valence electrons. The density of states in k space per unit
volume of crystal is 1/4~-rr3 and a.b.%‘ﬂumyﬁtal withlattice constant a and one
valence electron/atom has 2/a3 valence electrons/unit volume. For a
spherical Fermi surface the radius, ks’ is given by

1 3

_ 3
3 ks 4n/3 = 2/a
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When the Fermi surface is distorted by warping, the enclosed volume must
remain unchanged from the spherical case. For warping of the form (IV-1)

Cooper and Raimes [ 6] give the enclosed volume as

3
o

2

V =4n/3 K>[1+.57TA +1.85A12] . (IV-9)

We shall see later that | A< .04 and | A | < .09 for all the alkali metals;
in addition A and A1 are always negative. Under these conditions the contri-
bution of the terms in A2 and AlZ to the expression in the bracket is less than
2 percent. To a good approximation the volume enclosed by the warped Fermi
surface is just that of a sphere with radius ko’ and since the enclosed volume

must equal that of the Fermi sphere, ko equals ks and

kal/em= .62 . (IV-9a)

The data of Ham were fitted by choosing a level of energy such that
the maximum and minimum values of ka/2w for this energy averaged to .62.
The values of A, Al’ and ko for this energy were computed using Eq. (IV-1)
and values ka/2m given by Ham's E vs. k curves. Ifthe value of koa/21r
obtained differed by more than 1 percent from .62 we repeated the procedure

for a different value of energy.

In Table 4 -1 we tabulate the results of this procedure. Since the
actual curves of E vs. k are not shown we give the value of ak/2mw at the
Fermi energy for the principal directions. The last figure on the values for
A and A is given even though the precision of the fit and of the E vs. k
curves used does not justify it; rounding off would obscure some of the changes
of warping parameter with lattice constant. In addition, the values of A and
A1 for cesium are sensitive to the choice of Fermi energy since k changes
very rapidly with energy in this particular case. In Table 4 -2 we give
values of the warping parameters for lattice constants corresponding to
atmospheric pressure and to 15,000 kg/cmz; these values are obtained from
a linear interpolation between the values of lattice constant shown in Table

Iv-1.

Examination of Table 4 - 1 shows that the k vectors in the 100 and
111 directions are usually equal; for this case (IV-1) leads to the condition

A = .47 Al We have used this relation in computing B and Bl for values of
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A1 between .00 and -.08, using the expressions given in Apperidix 1. The

result can be expressed as

B/A = BI/AI =3.3 - 60 Al’ for AI <0. (IV-10)

*
C. Dependence of n on Pressure

We have obtained a range of values for A and A1 from Ham's work
and we can express B and B—-]: in terms of A and Al’ - We now notice that the
terms arising from the sixth-order Kubic harmonics dominate the expression
for n* Eq. (IV-6). Using the relation (IV-10) for B and setting C = 0 we find
that the terms in A and B contribute only about 1 percent to n" for |A|<.03.
We can simplify the fitting of the data with no significant error by considering
only the contribution of terms in Al’ Bl’ and C1 to n* . The expression for

E 3
n then becomes:

2

* 2
n =1+12.3A,°-24.6A (C;-B))-.615(C, - B

) (IV-11)

sk
A non-zero value of C1 can cause n to decrease as lAl ] increases.
s
Investigation of the behavior of n  vs. A, for different forms of C, is straight

1 obtained
using Eq. (IV-11) with the supplementary condition (IV-10) and various forms

sk
forward but tedious. In. Fig. 4 -1 we give some curvesof n vs. A

of Cl’ The values C1 = -.3 and C1 = -.4 were chosen because they reprisent

the simplest non-zero Cl's and because their magnitude gives values of n for
¥a 0 that are in the same range as the observed values in the alkalis. The

values G, =-.3 +4.5 Al and C, =-.4+5 Al are chosen because the terms

in Al' approximately cancel the terms in Al.z occurring in the expression for

n and give a steeper initial slope of the n* vs. Al curve. Certain features

of these curves should be noted.

. _
They show that n can decrease as the warping, l AI I, increases; the
‘experimental data and Ham's calculations do not conflict.

sk

The size of the changes in n produced by changes in A1 of the magni-
tude indicated by Table 4 -2 is consistent with the size of the observed
changes. Looking at the part of the curve before the minimum we see that

changes in Al of .02 produce changes of the order of 10 percent in n*.
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Metal o ak 00 2k 10 ak; g # |
& on.nc 2m 2m 21
. units
Li 8.11 .613 .623 .613 .002 .005
6.65 .607 .634 .613 L.011 .011
5.34 «DTH . 665 . 590 .031 .037
Na 10. 04)
8.11) No anisotropy
6.65)
K 11. 46 .625 . 640 . 625 .003 . 007
10. 05 .620 .620 . 620 0 0
8. 11 . 585 .675 . 575 .013 . 049
Rb 12. 57 .611 . 629 .611 . 004 . 009
10. 74 .605 . 627 . 605 . 005 D11
9. 05 . 560 . 680 . 560 .028 L, 061
Cs 13, 35 .600 .655 . 600 .013 . 027
11. 46 . 580 .670 . 580 .021 . 045
10. 04 .495 .655 .495 .041 .088
Table 4-1

Warping Parameters for Alkali Metals Computed

from Data of F. Ham

.
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Metal Pressure a A A1

& /cmz atomic

g units
Li 1 6. 64 -.011 -.011
15,000 6.42 -.015 -.015
K 1 9. 85 -.001 -.003
15,000 9.00 -.007 -.026
Rb 1 10. 64 -. 006 -.015
15,000 9. 55 -,021 -. 047
Cs 1 11,44 -, 021 -.045
15,000 10. 01 -.041 -.088

Table 4 -2

Warping Parameters of Alkali Metals
at Two Pressures, Computed
from Dataof F. Ham
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sk
The value of n passes through a minimum and then rises rapidly; no
additional assumptions need be introduced to account for the observed minimum

* .
of n for cesium.

The experimental data are semi-quantitatively fitted using non-zero Cl's
of the form shown in Fig. 4 -1. A quantitative fit does not seem feasible at
this stage; some theoretical guidance as to the form of C; is needed. Itis
a striking feature of the semi-quantitative fit that the magnitude of C, is much
greater than that of A1 . It is also worth noting that while the conaid:ration of
non-zero C,'s was forced upon us by the direction of the change in n , a
non-zero value of C1 is also needed in order to account for the magnitude of
the change in n in sodium and lithium, where the change in Al is very small.

However, several difficulties should be considered.

Ham's data give the warping for sodium as zero both at atmospheric
pressure and at 15,000 kg/cm‘2 and make it impossible to attribute the change
in n* to the pressure dependence of Al' On the other hand, the existence of
the low temperature magneto-resistance implies, subject to the reservations
mentioned in Section I, that there is a small anisotropy of the Fermi surface.
If this is so, we expect the anisotropy to change with pressure; if C1 is large

enough the small change in Al might account for the observed effect.

The change in ‘:‘1 for lithium is small, (.004); to account for the
observed change in n , about 5 percent, we choose a value for C, of - .4 + SAl
to obtain a sufficiently steep initial slope on the n* vs. A1 curves. The value of
n* for lithium at atmospheric pressure obtained from the curve for
C1 =*- 4 +5A,is .78; this is in agreement with the fact that the absolute value
of n for lithium is substantially less than one (Table III-2). The absolute
values of n* for the other alkali metals are larger and much closer to unity;
this suggests that the value of C1 for lithium should be different from that for
the other alkalis.

Most of the curves of n>=< vs. Al have minima for values of | A1 lless
than the atmospheric pressure |A1 I computed for cesiu*m; this is not true
for the curve with Cl = - .4+ SA1 , but the values of n at Al = - .045 are
much too low. To fit the cesium data we must postulate that the atmospheric
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pressure warping for cesium is considerably less than that given by Ham!'s data;
a value for A1 of -.01 or -.02 is probably needed. 'Since the work of Ham
indicates that in cesium the Fermi surface nearly touches the zone boundary,

it is possible that the drastic change in the behavior of n* vs. pressure at.

the minimum is due to the beginning of contact with the zone face. In this

case the discussion of the data in terms of the Cooper and Raimes descrip-

tion of the Fermi surface is unreliable. Since the only case in which a mini-
mum in »n* vs., pressure has been observed may be explained in terms of the

Fermi surface touching the zone face, it may be worth repeating that C1

s
was introduced primarily to yield a decrease in n with increasing l A1 |

rather than a dependence showing a minimum.

From Fig. 4 -1 we see that another result of anisotropic scattering
times is that the values of n* for A1 = 0 are always less than one. Since the
litérature values of n* for sodium and potassium were greater than unity we
used our Hall effect data where thickness measurements were available to
obtain the absolute value of the Hall constant and n’°= . The results were
presented in Table 3 -2 . Although the measurements of Studer and Williams
[ 7] were made on double distilled material in glass and should be reliable,
the large .n* for sodium, 1.17, is unacceptable. Ham's daté indicate that the

“Fermi surface in sodium is spherical; the magneto-resistance and thermo-
power experiments discussed in Sec. I also suggest that the surface is nearly
spherical. If A and A, are zero and -.Cl £.0, n*- is less than one. Small
Al’ of the order of -.01, and fairly llarge. Cl. of the order of + .3, can make
5> greater th:n one, but only by about 2 percent. In view of this we suspect
the value of n obtained from the data of Studer and Williams and prefer our
own. The same objection applies to their potassium data, which give n*= 1,011,
The only other Hall data on sodium are the 1886 measurements of Ettingshausen
and Nernst [8] . which give n*= .98. If we accept our values of n* for sodium
and potassium, the atmospheric pressure value of n* is less than one for all

the alkalis; the proposed explanation for this is the existence of a non-zero C1 -
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The slight decrease in the size of the pressure effect that occurred
when we cleaned our samples and made them more homogeneous, discussed
in Sec. III, might be due to a decrease in ICI | . There is no reason for
expecting our cleaning process to decrease lCl |rather than increase it;
however, changes in l C1 l can provide a reason for the dependence of the size
of the pressure effect on sample homogeneity. Furthermore, the large differ-
ences in the size of the rubidium pressure effect with different samples, ob-
served before we made clean, one-piece rubidium samples, can be understood

on the same basis.

The initial dependence of the pressure data on sample preparation raises
the question of whether the pressure results would be altered by further cleaning
of the sample. Since the inhomogeneities removed were relatively large and
should vary from sample to sample, we take the reproducibility finally achieved
to indicate that the cleaning process has eliminated most of the effect of
inhomogeneities. If the cleaning process could be carried further, as by the
growth of single crystals and the consequent elimination of grain boundaries,
we expect that at worst the size of the pressure effect would decrease. We do
not expect the direction of the pressure effect to change. It was the direction
of the pressure effect that forced us to consider anisotropic scattering times;
this anisotropy is the dominant feature of the interpretation. The proposal
that the scattering time is anisotropic is unaltered by the presence of some
scattering due to inhomogeneities, although the exact size of the anisotropy
might be altered. This is not crucial for us since we cannot fit the data in
detail and are concerned only with the order of magnitude of the anisotropy,
lCl I . The assumption is made here that the scattering is dominated by the
lattice vibrations and the effect of inhomogeneities is relatively small, so that

most of the anisotropy must be attributed to lattice scattering.

The pressure data and the changes in the warping parameter Al obtained
from Ham's calculations agree semi-quantitatively if we consider anisotropic
scattering times with values of C 1 of about -.3 . We must now examine

possible sources of the proposed anisotropy in C1 ;
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D. The Scattering Time

In the last section we found that in order to fit the experimental data
‘we needed to introduce an anisotropic scattering time 7 ('l-c')' . In this section
~we. shall indicate possible sources of this anisotropy and make some estimate
of its order of magnitude.

It is tacitly assumed that the scattering time for the case of applied
‘electric and magnetic fields is the same as that for an applied electric field
only. We follow the derivation of the expression for T (k) given by Mott and
Jones[ 9], modifying it only at those places where assumptions that lead to
an isotropic 7 are introduced.

~ If the distribution function is given by f(f), the probability that a state
at K is occupied, then in the steady state

+ (igék—’) ] (1V-12)
collisions

( 91(k)

ot ) fields

- We write the distribution function as

f(E) = £+ (—“3%‘—’) -frie(lii)s (IV-13)

where fo is the Fermi-Dirac distribution function. We take the z axis along
‘that particular direction in k space for which we wish to compute 7 (E) and

apply the electric field F along this direction. Since
dk_/dt = eF/n (IV-14)
the equilibrium Fermi-Dirac distribution is shifted in k space and becomes
f(k,t) = £_(k_ - eFtM,k k) . (IV-15)

We now assume spherical constant energy surfaces so that E(f) = E( | K I»);
thus

) - =(af('1€>\ e . (ﬂiz

T (i:) ¥ /ﬁelds at_ collisions

(IV-16)
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£(k)
Then ( ot collisions
number of collisions into a volume element at Kk and the number out of it;

is evaluated by taking the difference between the

by considering only transitions between states of equal energy, we obtain

( aaftm)coll. - [ L f(-lz)] S.f(_lz') Pk’k ds' - f(_I:)S.[ 4= f(-k")]PkkvdS' o (IV- 17)

Here Pkk' dS' is the probability per unit time of an electron making a transition
from a state k to a state k', both of which lie on the same spherical surface

of constant energy; dS' is an element of area about the state k'. The form of
Pkk' is given in Eq. (IV-23); Ukk' and Uk'k' the transition probabilities
between volume elements in k space, are equal by detailed balancing. Since
we have assumed spherical energy surfaces,lv kE | in Eq. (IV-23) is constant

on a surface of constant energy and

Pror = Fipm (IV-18)

Then

(_%ﬂtﬁ) coll. = S‘ [f(k') - f(k)] Py dS' . (IV-19)

Fermi sphere

Substituting for f(l-c"), f(l_c.) from Eq. (IV-13)anddividing through by

7 (k) (%fiﬂ)ﬁelds , and using the expression for (Bf r) )fields from
Eq. (IV-16) we obtain

fﬁ)’ S’[_l %] P, dS' . (1V-20)

Fermi sphere

T

—

Equation (IV-20) for 'r(—l:) is an integral equation. In order to estimate
the anisotropy of T (K) we shall set 'r(l-:')/ 'T(I:’) = 1 inside the integral. This
may be regarded as the first step of an iteration procedure for finding 7. Since
we chose our electric field (z axis) along the direction K for which we are

computing T(K) we have




k, =k, and k' =k_cos0 | (Iv-21)

~where 0 is the angle between k and k'. Let ¢ be the angle between the
plane of k and k' and the z-x plane. Then

m™ 2m
S’ a4 S‘ [1-cos 0] |sin 0| Pz (0)d0. (1V-22)
(o]

(o]

- We have chosen these limits on 0 and ¢ because of the possibility that
P’k'&é (0) # PT(',é (-0); this possibility arises because for an arbitrary directiqn
of k the section of the Brillouin zone for phonons centered on the tip of the k
vector is not symmetrical about the line 0 = 0. A phonon may be available for a
normal process with angle 0 but not for one with the angle: -0 . We would
like to evaluate .the inner. integral numerically.andprefer to include the effect

of asymmetries in it.

We now consider the form of Pi’!s (0). Perturbation theory gives

1 [P |
Y ik |w

where ‘Ukk' is the matrix element of the perturbing potential U taken between

2

(IV-23)

the initial electron state 4‘k and the final state ‘l‘k, [ 10]; unit crystal volume
is assumed. We shall be interested only in the perturbation due to lattice
vibrations, since at room temperature these dominate the scattering of

electrons.,  We then write

v @ ;v (7-T-R@) -vE-T)
(IV-24)
_Z_ii{(l).v V(r-T);

where V (? -T) is the potential at T associated with the ion at lattice point
T and R (T) is the displacement at 1. VAr - i’) includes both the potential due

to the ion core and to the electrons that shield the core. The wave functions are
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written in the Bloch form

-  ik.r |
U/ k(r) = e uk(r) 5 (IV-25)
We write the matrix elements as
- - sk —> - -
Uit = - E R(L) . S. kIJk, (r) V Vi, (r) dr (IV-26)
crystal
and by changing the origin to the lattice point atT sotnat r' =1 -1
- = _‘i:_z; .?- k = - -
Upr = - Z_. Ril} ot -2) _§¢k, (F)vve (F)dr . (IV 26a)
L

Bailyn [ 11] has computed the integral in - Eq. (IV-26a) in a calculation
that uses the Hartree-Fock equation for the electrons. We follow his notation

and express the integral as

g b (@D vV (D, (P dr = 538 (1V-27)
crystal

.
k - k'

.

- |

We are ignoring normalization factors. J denotes the contribution to the matrix

element of the ion core alone and S denotes a shielding factor which includes

tne effect of the electron cloud about the core and the exchange nole.

i -
If we now express the displacement R(-[) in terms of lattice waves, we

have

R{) = z Z ’éap s e‘iq'T (IV-28)
P q |

- . - -3 - - 3
where @ = is a unit vector which depends on g, the lattice vibration or

)

phonon wave number and the polarization p. ai' is the amplitude of tne

vibration.




Then

¥ -1(-1:—l-<.'+a.)-[ i ~ A .
Uk.k’ s - z-’ ZT e aq,p z eqp s [JS(0) ] . (Iv-29)
q P

the sum over § yields the condition

—
K, a reciprocal lattice vector
—

k-% +q= (IV-30)
0

and a value N, the number of ions.

-
‘Since K and K' are specified and we have restricted q to lie in the

; —
1st Brillouin zone, :1’ is specified and the sum over q reduces to a single term.

The value of aa— comes from the matrix element for a phonon annihila-

tion (creation) operator and is given by [ 12]

ool
(n q’p)

[. 3 ‘-\1/2
asr = ‘|m—— x or (IV-31)
q!p zqu!p

(n=>_+ 1)1/2 creation of phonon

9P

annihilation of phonon

where M is the mass of the ion and V':l'p the frequency of the phonon 'c-f .

¥

E; the équilibrinm occupation number is given by the Bose-Einstein
factor;
- ‘ 1

e -1

For the high temperature limit hv/kT << ] and a‘; becomes

1/2
" [—-—mi}v» —hl:?' ]
q q

High Temperature
Limit
We write this as
“ap T %#
’ "q,p
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>
where wa - is now the angular frequency of the phonon with wave vector q

and polarization p. We introduce the 1/N to cancel the N from the sum
Eq. (IV-30).

Then
1/2
Uy s = Z B Is@ees..T (IV-35)

w=> ,p
p=1,23 VP o

and dropping the sum over p with the understanding that we will consider the

polarization that gives the largest contribution to Ukk' we obtain

3 2
[JS(®)]“ (e, . %)
) B @.p
p7 , (0) = . (IV-36)
k,¢ sl |v E| “’Z?fp

Lumping all the uninteresting constants together into D, we have

. ) en (1-cos 0)|sin 0|[ IS (0)]2 (&= . 5)°
=~ = B S. dé S‘ do 5 q.p
7 (k) 5 o oep IV k Bl
(IV-37)
We now consider the sources of anisotropy in 7('12). The density of states
factor W—EI:—I— is, strictly speaking,isotropic since we assumed spheri-
k k'

cal constant energy surfaces to derive Eq. (IV-20). For a warped surface,
one could assume Eq. (IV-20) was still valid and compute 7 (k) using the
density of states factor. An anisotropic state density will act as a weighting
factor in the integral; for the case of an alkali we can estimate its magnitude
using Eq. (IV-4).

1

gl = 1y &) . __ . (IV-38)
K (@B = W [TFBY, 7B Y]

| v

Equation (IV-10) gives B, in terms of A1 . For a typical value of

Al’ -.02, B1 =-.09 and noting the values of Y6 in the principal directions we
see that the density of states factor varies by about + 10 percent from its
average value. This is a relatively weak weighting factor, compared with the

effect of wz—'
q,p




We now write

q (IV-39)

— -~
®9p T fdp

’
this is incorrect for large q, the differences in the elastic limit velocities for

and choose for c-tip the velocity of sound in the elastic limit (small q). While

different polarizations and for different directions of propagation are quite
large and this approximation indicates the relative importance of different
branches of the phonon spectrum and of different directions of the same
branch, even though the individual q's within a branch are not correctly
weighted. . We indicate the choice of the elastic limit sound velocity by writing
c ﬁ\,p' where ﬁ\ is a unit vector in the direction of q In Table 4 -3 we list
expressions for the velocity of sound squared times the density for the three
principal directions and evaluate the expressions using the elastic constants
for potassium, as given in Table 4-1 [ 13]. The point is that czz\ varies by
about a factor of six between the various transverse modes and i,s substantially
larger for the longitudinal modes than for the transverse ones. This weights
the contribution of the transverse phonons to the integral more strongly than that
of the longitudinal ones. Furthermore, it means that transitions using certain
phonons, namely 110 phonons polarized 110 will be weighted very much more
strongly than others. Transitions from a given initial state X on the Fermi
surface to those final states for which the transition probability is large,
involve many different phonon directions and so average the different sound
velocities to some extent. Since the angular terms in the integral weight
certain values of the scattering angle, 0, heavily and since the phonon di-
rection for a fixed scattering angle depends on the initial state K we do not
expect the variations in sound velocity to average out completely, although we

-
do expect that the averaging will make the anisotropy of T(k) considerably less

than that of czap . The numerical values in Table 4 --3 indicate how bad the

assumption of an elastically isotropic solid, usually made in computing T, is
for the alkali metals.

-

The term l/q2 in the integral for 1/'r(i<') depends on the initial state k
for those processes in which K # 0 in Eq. (IV-30). For a normal process,
in which K =0, ; depends only on the angle 0 between k and k' . In an
umklapp(U. K. ) process, in which K # 0, ?1. depends not only on 0, but also on




FIG. 4-2 CROSS SECTION, IN OOI PLANE, OF
BRILLOUIN ZONES FOR B.C.C. METAL.
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e
210°F”
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FIG.4-3 F(8) vs. 8 FOR POTASSIUM (K) AND LITHIUM (Li)
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Direction

of polarization

Longitudinal

2
Values of
° PE 4.p

Direction of propagation

Transverse

001

110

100 110 111
c l[c +c,, +2c,,] —l-[c +2¢c,, +4c,,]
11 2 L1177 12 44 3L%11 12 44
=4.2| = 6.4 = 7.1
Cgq | C44 ° 2.6 -
2.6
€11 ~ 12 _ €11 © 12 tC44
} . " 5 "
.41 1.15

Velocity of Sound in Potassium

Numerical values are for potassium in units of

dynes/crn2 x 10-10
from Table 1-1.

Table 4 - 3

, using values of c

11’ €12’ €44
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the particular reciprocal lattice vector K used; the latter depends on the

initial state k.

Figure 4 -2 shows a cross section of the Brillouin zone for a b.c.c.
lattice, taken in a 001 plane. The circles are cross sections of the Fermi
surface and the dashed square is a zone for phonons, centered on the state-l:.
The U.K. processes will be those for which the final state k' lies on that
portion of the Fermi sphere centered at 0 which is outside the dashed square.
A typical U.K. process and the associated phonon vector 21. is shown. For
fixed 0, the length Iq |depends on the initial state k; this is most clearly seen
by taking 0 = 180° and K first in the 100 and then in the 110 direction. For

the latter direction Iq | is about 1/4 as large as for k in the 100.

Normal processes must use longitudinal phonons, at least for those

directions in which a separation into longitudinal and transverse modes is
. P A\ ~\ A
possible, because the term ea’ . 8 becomes e*_ . q for a normal process
and this is zero for transverse modes. On the other hand, for an U.K,
- —

process s is not usually parallel to q and transverse phonons may participate;
in fact the low value of the velocity of sound for transverse phonons will act as
a weighting factor which emphasizes those U.K. processes which use trans-

verse phonons.

One source of anisotropy in Tis then the k dependence of the contribution
of 1/q2 to the integral for 7 (ic.). This source occurs in any b.c.c. metal; for
the case of the alkali metals the anisotropy of the velocity of sound must also

be considered.

We now wish to make some estimate of the anisotropy of T (I). The
correct way to obtain T (-l.c) would be to choose a direction -1: and compute
q, cza,p, and ea’p for a large number of points k' on a Fermi sphere and
evaluate Eq. (IV-37). This would be a major computational task., A simpler
but considerably less accurate procedure would be to consider only scattering
in two dimensions and evaluate the 0 integral in Eq. (IV-37) for fixed ¢ .
Some of the loss of accuracy comes from the fact that for some k directions
the 0 integral depends strongly on the value of ¢ chosen. For example, if

one chose k in the 110 direction and replaced the Brillouin zone for phonons
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by a sphere of equal volume, there is ¢ symmetry in the sense that the Ii’l

other hand, for k ina 11l direction this is not true. In a repeated zone

for fixed 0 is independent of ¢, although CaP and 'éa . 8 are not; on the

scheme the nearest neighbor Fermi spheres do not have their centers on a
111 axis and consequently the section of these spheres cut by the plane con-
taining k (111) and k' depends on ¢ . This makes it difficult to estimate
7(111) by doing only the 0 integration.

We decided to estimate the anisotropy in T (E) by evaluating

2w

: 2
1(®) = S‘ (1 - cos o).lelti:ulg [[(I3S)e]*de (i
q

o

for K in the 100, 110, and 111 directions. This is a very crude procedure,
~ which not only replaces the three dimensional integration in Eq. (IV-37) by

a two dimensional one, but also considers the velocity of sound, the polariza-

tion factor 'éé\ 78 , and the density of states as constants. Although. we could
3

have approximated .cazxp in ‘Eq. (IV-37) by using the velocity of sound in the

principal direction clo.sest to that of ﬁ', we felt this procedure ran the risk of
“weighting the integx;al by the sound velocity for an unrepresentative phonon; it
would also give a factor -—Zi-— that was discontinuous in 0 .
©4.p

We obtained the values of (JS)Z given by Bailyn [13]; in -Table IV-4
we list his values of u3 (JS)Z vs. u = -Ei-g-o— for potassium and lithium, The
square of the matrix element for potassium has values less than those for
rubidium and cesium and greater than those for sodium; the general behavior
of (JS)z vs. u is similar for all these four metals and we chose potassium
as representative of them. Lithium is unlike the other alkalis in that

(,IJS)z goes through a zero near 0 = 120° . In Fig. 4- 3 we have plotted

F(0) = (7S)% (1 - cos 0) sin @ (IV-41)

for 0 from 0 to 180° ina polar plot, using Bailyn's values for the potassium
and lithium matrix elements. For 0 from 180° to 360° the absolute value of
sin 0 should be used. F(0) peaks rather sharply near 75° for lithium; this




u 0 (1-cos0)  w(3S)® u3(s)2  F(0) F(0)

= sin —g degrees x 8in 0 for K for Li for K for Li
.00 | 0 0 0 0 .00 .00
4.0 11.5 . 004 0 0 .00 .00
.20 23 <103 . 005 . 005 + 02 .02
30 35 . 10 .035 035 o iz <13
.40 47 5 23 . 090 .090 w312 .32
+ 150 60 .43 . 190 . 190 « b5 .65
.60 74 + 10 . 3185 2 265 102 . 86
«B5 81 .83 . 345 o TS 1.04 .83
w40 89 .98 « 375 . 265 107 .76
oD 97 Lo 11 393 «220 1./03 .58
. 80 106 L.22 . 400 125 .95 .30
.85 116 1.30 . 385 025 . 82 .05
.90 128 1.28 . 340 . 010 .60 . 02
.95 144 1.07 . 305 +025 w38 <03
«97 152 . 88 . 300 033 . 29 .03
.98 157 .70 . 296 .035 <23 +03
.99 164 . 54 . 293 . 040 IR & .02

1.00 180 .00 . 290 .042 .00 .00

Table 4 -4

Scattering Functions for K and Li

Using Bailyn's Values of u3(JS)2
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will select a smaller range of phonon wave vectors and sound velocities than

the F(0) for potassium and will probably give more anisotropy in 7.

In Tables 4-5, 4-6, and 4 -7 we list qa/2m as a function of 0 for
various initial k. The values were obtained by measuring on a diagram such
as that in Fig. 4-2. We also tabulate (%)2 and - F(0) (:—:)2; the lattes
is proportional to the integrand in Eq. (IV-40). We used F(0) evaluated
with both thel‘\potassium and lithium matrix elements. The integrand of
Eq. (IV-40) was plotted as a function of 0 and I(K) evaluated graphically. The
results are shown in Table IV-8; we have also evaluated the integral I(i)
counting U.K. processes only. This takes account of the large velocity of
sound for the longitudinal phonons used .in normal processes by not counting

these processes at all.

As was pointed out before,the integration for k in the 111 direction is
unrepresentative because the possible scattering processes depend strongly on
the angle ¢ , that is on the particular great circle on the Fermi sphere for
which we have chosen to do the 0 integration. Because of this strong ¢
dependence no two-dimensional integration will give a very meaningful
estimate of 7(111); on the other hand, Eq. (IV-40) can give a meaningful

estimate for T(100) and T7T(110) because of the weak ¢ dependence.

The results of the integration using the K matrix element show a
difference of about 20% in the values of I(l_(.) for the 110 and 100 directions
counting both N and U.K. processes; if only the U. K, processes are
counted the values differ by nearly 70% . The lithium matrix element gives
a difference of about 20% between I(100) and I(110) for N and U.K. pro-

cesses and a 60% difference if only the U.K. processes are counted.

We have also tabulatedl-. 1Y6 for the three principal directions.
This gives the dependence of T7(k) on the sixth-order Kubic harmonic with
C,= - 3 . We should point out that we have no way of knowing what C is;
there is no reason for C and C1 to be simply related in the way A and A1
were for certain shapes of the E vs. k curves. In addition, even though the
influence of C on n* may be small because of the smaller size of the

coefficients arising from the fourth-order Kubic harmonic its influence on
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7 is not. It is interesting to note that both matrix elements give

7 (110)> 7 (100), as would be the case if T were proportional tp 1. -. 3y, .

We conclude that if the matrix elements obtained by Bailyn are
correct, then the geometry of the U.K., processes alone is sufficient to
produce appreciable anisotropies in T for both potassium and lithium. We
have seen that the velocity of sound is highly anisotropic in the alkalis and
may produce further anisotropy in T; like the geometrical factor (1/ ]q IZ)

it is most significant in the umklapp region.

The highly anisotropic 'F'(-l:) for lithium is in line with the large
deviation of n* from unity for this metal noted in Table. 1-1; however, it is
not clear why the same deviation does not occur in the case of potassium where
the anisotropy is also large. The form of F(0) for lithium also suggests a
possible explanation for the strong temperi"iture dependence of n* shown in
Fig. 3 -15. Although F(0) peaks at 75°, scattering processes at 0 = 90°
are still quite heavily weighted. The wave vectors for 0 = 90° and k in the
110 are quite large (qa/2m = .88; see Table 4 -5); as the temperature is
lowered some of these phonons are no longer excited and the scattering should
be c'nanqu severely. The high Debye temperature, OD E 430°K, suggests
that there should actually be 'freezing out' of phonons at nitrogen tempera-
ture elven tnough we are interested in the Debye temperature for transverse
phonons which will be lower than the specific heat OD . However, there is
also the possibility that the change in n* may be connected with the martensitic

ix . 0
transition occurring near 77 K .

- - - * [ 4 3 2
The small changes in n with temperature for sodium and potassium

may also be due to the beginning of the 'freezing out" of some phonons,
However, the scattering function F(0) is much less sharply peaked in the

case of potassium than in the case of lithium and so the total scattering is
much less sensitive to the freezing out of large q phonons. In addition, the
“Debye temperatures are lower for these metals. Both factors should decrease

the temperature effect in sodium and potassium.
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2 2

N F(0) eqi})z F(0) (22
for potassium for lithium

15 . 15 44.4 .00 .00
30 .30 11,1 . 89 . 89
45 . 45 4.9 1.8% 1.37
60 .60 2.8 1.82 1.82
75 +T5 1.8 1.84 1,55
90 . 88 1.3 1.39 <99
105 . 88 1.3 1. 2% , .42
120 13 1.9 1.40 .02
135 « 55 3.3 1.58 . 10
150 .41 5.9 1,83 .18
165 « 25 16.0 2.24 .32
175 . 20 25.0 1.00 #&D
180 .18 31.0 .00 .00

U. K. processes start at 0 :950

0@ is measured in 100 plane

Table 4 -5

Scattering Functions for k in 110 Direction
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0 £ & F(0) (21 2 F(0) (ox) 2
for potassium for lithium

15 + 15 44. 4 .00 .00

30 .30 11.1 . 89 . 89

45 .45 4.9 1. 37 1.37

60 .60 2.8 1.82 1.82

75 . 75 1.8 1.84 1.55

90 « 57 3.1 3.32 2.36

93 . 50 4.0 4.26 2,56

105 . 47 4.5 4.41 1.44

120 .48 4.3 3.18 .04

135 .58 2.9 1.39 .09

150 .73 1.9 .59 .06

165 « 19 1.6 .06 .02

180 « 15 1.8 .00 .00

U.K. processes start at 0 ="70°

0@ is measured in 100 plane

Table 4 -6

Scattering Functions for X in 100 Directions
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e G Re ) ? F(0) (2L 2
for potassium for lithium

15 .15 44.4 .00 . 00
30 .30 11.1 .89 . 89
45 .45 4.9 1.37 1.37
60 .60 2.8 1. 82 1. 82
75 .70 2.0 2.04 1.72
90 .58 3.0 3.21 2.28
105 .44 5.2 5.09 1. 66
120 .35 8.2 6.06 .08
135 .40 6.2 2.98 .18
150 .50 4.0 1. 24 12
165 .65 2.4 .34 .02
180 . 80 1.6 .00 .00

~

U.K. processes start at 0 = 73°
0 is measured in 110 plane;

positive 0 go to 100 axis

-60 .60 2.8 1.82 1.82
-75 .15 1.8 1.84 1.55
-90 .88 1.3 1.39 .99

No U.K. processes for O between -90° and -180°

Table 4-7

Scattering Functions for k in 111 Direction
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Quantity Direction of k
110 111 100
1-.3 Y6 1.5 «5 %

Using potassium matrix element

I(k) N and U.K. processes -

arbitrary units 46 48 57

(1]} x 100

[ proportional to T (fc.)] 2.2 2.1 1.8
I('l-c') U.K. processes only 26 34 44
[1(9)]°! x 100 U.K. only . 3.8 2.9 2.3

Using Li matrix element

I(l?) N and U.K. processes -

arbitrary units 58 62 71
[1®)] ! x 100 1.7 1.6 1.4
I(la U.K. processes only 25 28 40
[1®] ! x 100 U.K. only 4.0 3.6 2.5

Table 4-8

I(l—c’) for Various Conditions
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E. Conclusions

The observed pressure effects in the alkalis require the assumption
of an anisotropic scattering time, T(l?), in order to explain how relatively
small increases in the warping parameters which describe the Fermi surface
cause n* to decrease. The assumption of an anisotropy in 7 (-1:) is required
both by the sign of the pressure effect, and, in the case of sodium and lithium,
by its magnitude. The anisotropy in the shape of the Fermi surface is small,

except possibly in the case of cesium, while the anisotropy in 7 is large.

The anisotropy in 7 comes from: (1) the fact that 1/ l q IZ occurs as a
k dependent weighting factor in the expression for 7 and (2) the fact that
I/CZQ.P occurs as a highly anisotropic weighting factor in the same expression.
A very crude calculation shows that the first factor alone can cause consider-

able anisotropy in T .
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Appendix I
We wish to relate the coefficients B, B, in Eq. (IV-4) to A and A1

in Eq. (IV-1). For small warping we may express the energy in the form

%%k 2

E = —3— [ e )% + 2 e/ ¥, (0,00 + 8 (e )® Yé(o,es)] (A-1)

which is just Eq. (I-4) with s = rt.

Furthermore
8 4%k 3 5
(BE) g = —=2 [() +ar (£) v, 0.0 v6s () v 098] (a-2)
F m o o o

where the derivative is evaluated at the Fermi energy.

Now we know that
OE ok
(1) () =1 (A-3)
k EF oE EF
in any direction in k space. Equation (IV-4) gives (aa—lEQ;)E .
F

We use the subscripts 1, 2, 3 to indicate the [100], [110], and [ 111]

directions: the Kubic harmonics and (—i) are evaluated in these directions.
k

For example =

_ k _
kg _(Eo—)1 = (1+A+A)) (A-4)
using Y4’[ 100] = Y, [100] = 1 in Eq. (IV-1).
Let us introduce the notation
K K, > k2
Eq)i + 4r (K)i Y4 (i) + 68 (H )i Y6(1)] = a, (A,Al, r, s) (A-5)

where i runs from 1 to 3.
Substituting Eqs. (A-2), (A-5) and (IV-2) into Eq. (A-3) we obtain

) B 13 )
(1 +B +B1)0.1—(1—4—' - TBI)QZ = (1 -

B, 16 4

3 5 Bj) oy (A-6)
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From this we obtain two linear equations for B and Bl whose solution

.. - 13a,
(ay -0)) (o) + — =

16n3
(a; -a;) (a) )

: 22
Ryt gy

The:-a.i depend on r and s of Eq. (A-1); we now obtain these. We

substitute
=1+AY, (9,0) tA Y, (0,8) = k, | (Iv-1)

~

into the expression for the energy, Eq. (A-1). The energy must be cox;stant
on the Fermi surface. By requiring the energy in the three principal direc-

tions to be the same, we obtain

4 -
) -

2k, %+ x k14 + sk16 = 1/2 kzz‘- 14 v

b 4
1/2k,“-2/3 rk;” +
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This yields 2 linear equations for r and s in terms of A and A

The solutions are:

and

We can now compute B and B1

-65-

1

2 2 6 6
k2 -k, k% +L62k,
2 . 2 6 6
k2 -k, k,° - 1.78 k,
Z
4 5 6 6
g k% + 162k,
4 4 6 &
ot ert k% 178k,
4
k
4 K 2 2
k)" +—— k)" -k,
4 4 2 . 2
K f 6Ty k)% -k, |
"
k -
4 2 b 6
Kt 2 k,®+ Lezk,
4 4 6 6
A N L I

as a function of A and A, .

1
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